BcNAC056 Interacts with BcWRKY1 to Regulate Leaf Senescence in Pak Choi.

Plant Cell Physiol

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.

Published: September 2023

Senescence is the final stage of leaf development. For leafy vegetables such as pak choi, leaf senescence is adverse to yield due to the harvest period shortening. However, the regulatory mechanisms of leaf senescence are largely unknown in leafy vegetables. Here, we isolated and characterized a NAC gene, BcNAC056, in pak choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis cv. 49caixin]. BcNAC056-GFP was located in the nucleus at the subcellular level, and BcNAC056 was responsive to leaf senescence and different hormones at the transcriptional level. Heterologous overexpression of BcNAC056 in Arabidopsis promoted leaf senescence, accompanied by the increased expression of senescence-associated genes (SAGs), whereas virus-induced gene silencing-based silencing in pak choi delayed leaf senescence. The following transcriptome analysis showed that heterologous overexpression of BcNAC056 enhanced some AtSAG transcripts in Arabidopsis. Electrophoretic mobility shift assay (EMSA) and dual-luciferase (LUC) reporter assay revealed that BcNAC056 activated SAG12 by directly binding to the promoter. In addition, with the LUC reporter and transient overexpression assays, we proposed that BcNAC056-BcWRKY1 interaction promoted the activation of BcSAG12. Taken together, our findings revealed a new regulatory mechanism of leaf senescence in pak choi.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcad073DOI Listing

Publication Analysis

Top Keywords

leaf senescence
28
pak choi
16
leaf
8
senescence
8
leafy vegetables
8
heterologous overexpression
8
overexpression bcnac056
8
luc reporter
8
bcnac056
6
choi
5

Similar Publications

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

Inducing resistance of postharvest fruits and vegetables through acibenzolar-S-methyl application: A review of implications and mechanisms.

Plant Physiol Biochem

January 2025

College of Food Science and Engineering, Bohai University, 121013, Jinzhou, PR China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, PR China. Electronic address:

Significant losses of vegetables and fruits occur at multiple stages, including harvest, sorting, storage, and transportation, primarily due to mechanical damage, pathogen invasion, and the natural process of senescence. To mitigate postharvest decay and maintain superior quality of produce, conventional techniques such as low temperature storage and synthetic fungicide treatment are widely employed. Acibenzolar-S-methyl (ASM), an effective plant resistance inducers, has demonstrated its efficacy in protecting against a diverse range of fungal and bacterial pathogens.

View Article and Find Full Text PDF

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!