Cadmium (Cd) and polyethylene (PE) seriously contaminate the aquatic environment and threaten human health. Many studies have reported the toxic effects of Cd and PE on plants, whereas few have reported the combined contamination of these two pollutants. In this study, duckweed (Lemma minor) was used as an indicator to explore the effect of PE microplastics (PE-MPs) at concentrations of 10, 50, 100, 200, and 500 mg/L on tolerance to 1 mg/L Cd. The results showed that different concentrations of PE-MPs inhibited the growth rate and chlorophyll content of duckweed to different degrees, both of which were minimal at 50 mg/L PE-MPs, 0.11 g/d, and 0.32 mg/g, respectively. The highest Cd enrichment (7.77 mg/kg) and bioaccumulation factors (94.22) of duckweed were detected when Cd was co-exposed with 50 mg/L of PE-MPs. Catalase and peroxidase activity first decreased and then increased with increasing PE-MPs concentrations, showing "hormesis effects", with minimum values of 11.47 U/g and 196.00 U/g, respectively. With increasing concentrations of PE-MPs, the effect on superoxide dismutase activity increased and then declined, peaking at 162.05 U/g, and displaying an "inverted V" trend. The amount of malondialdehyde rose with different PE-MPs concentrations. This research lay a foundation for using duckweed to purify water contaminated with MPs and heavy metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-29164-7 | DOI Listing |
J Hazard Mater
January 2025
Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China. Electronic address:
Microplastics have evolved as widespread contaminants in terrestrial and aquatic environments, raising significant environmental concerns due to their persistence and bioaccumulation. In this study, we investigated the toxicity of polyethylene microplastics (PE-MPs) on the agricultural insect, Spodoptera frugiperda. Maize leaves containing three sizes (0.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China. Electronic address:
The accumulation of microplastics (MPs) in soils due to anthropogenic activities affects the growth and development of plants and thereby endangering the diversity and function of ecosystems. Although there is an increasing number of studies exploring the effects of MPs on plants in recent days, most of them focus on crops only. However, few studies have been conducted on woody plants that play a prominent role in ecosystems, while crucial edaphic factors which potentially restrain plant growth in MP-contaminated soils are yet to be revealed.
View Article and Find Full Text PDFSci Rep
November 2024
School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China.
Microplastics (MPs)-induced changes in soil nutrient cycling and microbial activity may pose a potential risk to soil ecosystem. Although some studies have explored these topics, there is still a large space for exploration and a relative lack of research on the mechanism by which soil health and its functions are affected by these changes. Thus, this study investigated the effects of polyethylene (PE) MPs with two particle sizes (13 μm and 130 μm) at five concentrations (0%, 1%, 3%, 6% and 10%, w/w) on soil biochemical properties and ecosystem function.
View Article and Find Full Text PDFAquat Toxicol
December 2024
National Marine Environmental Monitoring Center, Dalian 116023, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!