Biohydrogen is an economical fuel which has enormous promise as an alternative energy source. The synthesis of biohydrogen can be done more affordably and sustainably using microalgae. For the generation of biohydrogen and the treatment of wastewater, microalgae derived from effluent have been showing very impressive outcomes. In comparison to traditional fuel sources, microalgae have benefits. Microalgae are capable of fixing ambient Carbon dioxide and converting it to carbohydrates, which are subsequently processed biochemically to provide fuel. When compared to terrestrial crops, they require less water and minerals for production. But besides these benefits, there are certain technological restrictions on the scale-up implementations of microalgae bioenergy. In this work, we explored the production of biohydrogen from several types of microalgae. The process of producing biohydrogen is affected by a number of variables, including pH, substrate concentration, the kinds of microalgal species, and others. The most recent studies and difficulties related to each stage of the biohydrogen manufacturing process are outlined. The synthesis of microalgal biohydrogen is improved using promising approaches that are discussed. Also, the specific future direction are covered. The possibility for microalgae-based production of biohydrogen to serve as an environmentally friendly and carbon-free biofuel solution that might handle the impending fuel scarcity was demonstrated. However, additional study is required on both the upstream and downstream processes of the synthesis of biohydrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-023-00840-w | DOI Listing |
Heliyon
January 2025
African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.
The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Viona Consulting Inc, Agro-Environmental Innovation and Technology, Research and Development Company, Thornhill, ON, L3T 0C6, Canada.
Energy from renewable resources has been growing in popularity, which ultimately helps reduce emissions of greenhouse gases (GHGs) and contaminants. Since hydrogen (H) has a higher combustion production of energy than hydrocarbon fuels, it has been identified as a clean, sustainable, and environmentally friendly energy source. There are several benefits to producing biohydrogen (bioH) from renewable sources, including lower cost and increased sustainability.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:
Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.
View Article and Find Full Text PDFBioresour Technol
December 2024
Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!