AI Article Synopsis

  • Climate change is rapidly altering species distributions, particularly in northern latitudes where milder winters and less snow cover are anticipated.
  • The wolverine, a threatened carnivore, shows a surprising increase in reproductive events and distribution in regions with little to no spring snow cover over two decades, challenging previous assumptions about their reliance on snow for reproduction and habitat.
  • These findings underscore the necessity of longitudinal data in conservation efforts, as changing environmental conditions can shift species' ecological parameters and shape future habitat availability.

Article Abstract

Globally, climate is changing rapidly, which causes shifts in many species' distributions, stressing the need to understand their response to changing environmental conditions to inform conservation and management. Northern latitudes are expected to experience strongest changes in climate, with milder winters and decreasing snow cover. The wolverine (Gulo gulo) is a circumpolar, threatened carnivore distributed in northern tundra, boreal, and subboreal habitats. Previous studies have suggested that wolverine distribution and reproduction are constrained by a strong association with persistent spring snow cover. We assess this hypothesis by relating spatial distribution of 1589 reproductive events, a fitness-related proxy for female reproduction and survival, to snow cover over two decades. Wolverine distribution has increased and number of reproductive events increased 20 times in areas lacking spring snow cover during our study period, despite low monitoring effort where snow is sparse. Thus, the relationship between reproductive events and persistent spring snow cover weakened during this period. These findings show that wolverine reproductive success and hence distribution are less dependent on spring snow cover than expected. This has important implications for projections of future habitat availability, and thus distribution, of this threatened species. Our study also illustrates how past persecution, or other factors, that have restricted species distribution to remote areas can mask actual effects of environmental parameters, whose importance reveals when populations expand beyond previously restricted ranges. Overwhelming evidence shows that climate change is affecting many species and ecological processes, but forecasting potential consequences on a given species requires longitudinal data to revisit hypotheses and reassess the direction and magnitude of climate effects with new data. This is especially important for conservation-oriented management of species inhabiting dynamic systems where environmental factors and human activities interact, a common scenario for many species in different ecosystems around the globe.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.16908DOI Listing

Publication Analysis

Top Keywords

snow cover
28
spring snow
16
reproductive events
12
snow
8
wolverine distribution
8
persistent spring
8
cover
7
distribution
6
species
6
recolonization persecution
4

Similar Publications

A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.

View Article and Find Full Text PDF

The article examines the territory of East Kazakhstan, where a sharply continental climate prevails with hot summers, cold and snowy winters. The mountainous regions of East Kazakhstan are represented by the Kalba, Altai and Saur-Tarbagatay ranges, they are surrounded by rolling plains. The highest points are at 3000-4500 m.

View Article and Find Full Text PDF

Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations.

View Article and Find Full Text PDF

Hydrologic outputs generated over the Great Lakes with a calibrated version of the GEM-Hydro model.

Sci Data

January 2025

Meteorological Research Division, Environment and Climate Change Canada, Dorval, QC, Canada.

This dataset contains outputs from a calibrated version of the GEM-Hydro model developed at Environment and Climate Change Canada (ECCC) and is available on the Federated Research Data Repository. The dataset covers the basins of the Laurentian Great Lakes and the Ottawa River and extends over the period 2001-2018. The data consist of all variables (hourly fluxes and state variables) related to the water balance of GEM-Hydro's land-surface scheme (including precipitation, surface and sub-surface runoff, drainage, evaporation, snow water equivalent, soil moisture…) and mean daily streamflow at 212 gauge locations.

View Article and Find Full Text PDF

The Influence of Migration Timing and Local Conditions on Reproductive Timing in Arctic-Breeding Birds.

Ecol Evol

January 2025

Wildlife Research Division Environment and Climate Change Canada Ottawa Ontario Canada.

For birds breeding in the Arctic, nest success is affected by the timing of nest initiation, which is partially determined by local conditions such as snow cover. However, conditions during the non-breeding season can carry over to affect the timing of breeding. We used tracking and breeding data from 248 individuals of 8 species and subspecies of Arctic-breeding shorebirds to estimate how the timing of nest initiation is related to local conditions like snowmelt phenology versus prior conditions, measured by the timing and speed of migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!