Alcohol use during adolescence is a serious public health problem, with binge drinking and high-intensity drinking being particularly harmful to the developing adolescent brain. To investigate the adverse consequences of binge drinking and high-intensity adolescent drinking, adolescent rodents were intermittently exposed to ethanol through intragastric gavage, intraperitoneal injection, or vapor inhalation. These models revealed the long-lasting behavioral and neural consequences of adolescent intermittent ethanol (AIE) exposure. The present study was designed to characterize a different AIE model, namely, intermittent exposure to a single bottle of 10% ethanol as the only source of fluids on a 2 days on/2 days off (water days) schedule, and to determine whether this AIE exposure model would produce changes in hormonal and neuroimmune responsiveness to challenges of differing modalities. Assessments of ethanol intake as well as blood and brain ethanol concentrations (BECs and BrECs, respectively) in adult male and female rats (Experiment 1) revealed that BECs and BrECs peaked following access to ethanol for a 2 h period when assessed 1 h into the dark cycle. Experiment 2 revealed age differences in ethanol intake, BECs, and BrECs following a 2 h access to ethanol (1 h into the dark cycle), with adolescents ingesting more ethanol and reaching higher BECs as well as BrECs than adults. In Experiment 3, intermittent exposure to a single bottle of 10% ethanol for 10 cycles of 2 days on/2 days off was initiated either in early or late adolescence, followed by an acute systemic immune challenge with lipopolysaccharide (LPS) in adulthood. LPS increased corticosterone and progesterone levels regardless of sex and prior ethanol history, whereas an LPS-induced increase in cytokine gene expression in the hippocampus was evident only in ethanol-exposed males and females, with females who underwent early exposure to ethanol being more affected than their later-exposed counterparts. In Experiment 4, intermittent ethanol exposure in females was initiated either in adolescence or adulthood and lasted for 12 ethanol exposure cycles. Then, behavioral (freezing behavior), hormonal (corticosterone and progesterone levels), and neuroimmune (cytokine gene expression in the PVN, amygdala, and hippocampus) responses to novel environments (mild stressors) and shock (intense stressors) were assessed. More pronounced behavioral and hormonal changes, as well as changes in cytokine gene expression, were evident in the shock condition than following placement in the novel environment, with prior history of ethanol exposure not playing a substantial role. Interleukin (IL)-1β gene expression was enhanced by shock in the PVN, whereas shock-induced increases in IL-6 gene expression were evident in the hippocampus. Together, these findings demonstrate that our intermittent adolescent exposure model enhances responsiveness to immune but not stress challenges, with females being more vulnerable to this AIE effect than males.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417636 | PMC |
http://dx.doi.org/10.3390/cells12151991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!