The search for simple morphological predictors of oocyte quality is an important task for assisted reproduction technologies (ARTs). One such predictor may be the morphology of the oocyte nucleus, called the germinal vesicle (GV), including the level of chromatin aggregation around the atypical nucleolus (ANu)-a peculiar nuclear organelle, formerly referred to as the nucleolus-like body. A prospective cohort study allowed distinguishing three classes of GV oocytes among 135 oocytes retrieved from 64 patients: with a non-surrounded ANu and rare chromatin blocks in the nucleoplasm (Class A), with a complete peri-ANu heterochromatic rim assembling all chromatin (Class C), and intermediate variants (Class B). Comparison of the chromatin state and the ability of oocytes to complete meiosis allowed us to conclude that Class B and C oocytes are more capable of resuming meiosis in vitro and completing the first meiotic division, while Class A oocytes can resume maturation but often stop their development either at metaphase I (MI arrest) or before the onset of GV breakdown (GVBD arrest). In addition, oocytes with a low chromatin condensation demonstrated a high level of aneuploidy during the resumption of meiosis. Considering that the degree of chromatin condensation/compaction can be determined in vivo under a light microscope, this characteristic of the GV can be considered a promising criterion for selecting the best-quality GV oocytes in IVM rescue programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416848 | PMC |
http://dx.doi.org/10.3390/cells12151976 | DOI Listing |
Cell Biosci
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.
Results: This study uncovers three novel mutations (c.
Dev Biol
December 2024
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China.
(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo mitosis after DNA replication. (2) Purpose: To furnish theoretical insights and data that support the process of cell reprogramming after nuclear transplantation.
View Article and Find Full Text PDFDev Biol
December 2024
Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; CINTESIS@RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. Electronic address:
Human oocytes are highly specialized cells with the capacity to store and regulate mRNAs during oocyte maturation, in preparation for post-fertilization steps. Here we performed single-oocyte transcriptomic analysis of human oocytes in three meitoic maturation stages - Germinal Vesicle (GV; n = 6), Metaphase I (MI; n = 6) and Metaphase II (MII; n = 7). Single-oocyte transcriptomic analysis revealed that the total number of expressed genes progressively decreased from GV to MII stages, with 9660 genes being transcribed in GV, 8734 in MI and 5889 in MII.
View Article and Find Full Text PDFAm J Reprod Immunol
December 2024
Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.
Introduction: Anticentromere autoantibodies are associated with refractory IVF/ET failure, but causality is unclear. Experimental models are needed.
Methods: Immature oocytes collected from 23-day-old mice were matured in vitro for 18 h in a culture medium containing an anti-human centromere protein A (CENP-A) polyclonal antibody, and those oocytes' maturity and chromosome/spindle structure were assessed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!