Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrasonic field (USF) is widely used to regulate the intrinsic properties of materials that are not applied in electromagnetic wave (EMW) absorption. One reason is that the lack of a response mechanism for the materials to USF hinders the expansion of their EMW absorption performance. Therefore, to address this issue, a series of CuS nanoparticles with diverse anions are constructed in the presence or absence of USF. The ultrasonic-induced cavitation effect can significantly promote CuS crystallization and lead to the accumulation of S defects at the grain boundaries (GBs). Furthermore, the S defects at the GBs are easily oriented and arranged, allowing the polarization relaxation retention to be maintained at 10 wt%. Consequently, the CuS with a nitrate precursor under USF shows an optimum effective absorption bandwidth (EAB) of 10.24 GHz at a thickness of 3.5 mm, which is 228.6% more than that without the USF. CuS with a chloride precursor also achieves an EAB of 3.92 GHz, even at a considerably low filler ratio. Thus, this study demonstrates the response mechanism of diverse anions to the USF for the first time and provides a novel technique to optimize the EMW absorption performance of semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202305586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!