AI Article Synopsis

  • The study compared direct amplification of viral nucleic acid from transport medium with traditional extracted nucleic acid for PCR, sequencing, and genotyping applications.
  • XpressAmp lysate performed well for SARS-CoV-2 PCR and ACE genotyping, often matching or surpassing the results of extracted nucleic acid, but failed in next-generation sequencing applications.
  • While direct amplification improves processing speed and simplifies PCR and genotyping methods, it has limitations for assays needing high-quality nucleic acid inputs, like detecting ACE2 expression.

Article Abstract

Objective: The aim of this study was to compare the performance of direct amplification of viral nucleic acid from transport medium to extracted nucleic acid for polymerase chain reaction (PCR), sequencing, and genotyping applications.

Methods: XpressAmp lysate and extracted total nucleic acid from viral transport medium containing nasopharyngeal specimens were evaluated across different molecular applications to determine performance characteristics.

Results: SARS-CoV-2 quantitative PCR and angiotensin-converting enzyme (ACE) genotyping assays worked well with XpressAmp lysate, almost equal with or better than extracted nucleic acid in some specimens. However, XpressAmp completely failed to perform in next-generation sequencing for strain typing. Both protocols failed to detect ACE2 expression in viral transport medium.

Conclusion: Direct amplification of viral nucleic acid from viral transport medium containing nasopharyngeal specimen works well for molecular assays with low thresholds of quality; however, it does have limitations with assays that require high quality nucleic acid for input. Use of the XpressAmp protocol significantly improves turnaround time and allows for easy ramp-up of PCR and genotyping assays.

Download full-text PDF

Source
http://dx.doi.org/10.1093/labmed/lmad075DOI Listing

Publication Analysis

Top Keywords

nucleic acid
24
viral transport
16
transport medium
16
direct amplification
12
amplification viral
12
strain typing
8
angiotensin-converting enzyme
8
viral nucleic
8
extracted nucleic
8
xpressamp lysate
8

Similar Publications

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.

View Article and Find Full Text PDF

Detection of SARS-CoV-2 and a possible variant in shelter cats.

PLoS One

January 2025

Arizona Humane Society, Phoenix, Arizona, United States of America.

SARS-CoV-2 is the cause of mild to severe acute respiratory disease that led to significant loss of human lives worldwide between 2019 and 2022. The virus has been detected in various animals including cats and dogs making it a major public health concern and a One Health issue. In this study, conjunctival and pharyngeal swabs (n = 350) and serum samples (n = 350) were collected between July and December 2020 from cats that were housed in an animal shelter and tested for the infection of SARS-CoV-2 using real time reverse-transcription polymerase chain reaction (rRT-PCR) that targeted the N1 and N2 genes, and a SARS-CoV-2 surrogate virus neutralization Test (sVNT), respectively.

View Article and Find Full Text PDF

Two novel yeast strains, NYNU 236247 and NYNU 23523, were isolated from the leaves of Hance, collected in the Tianchi Mountain National Forest Park, Henan Province, central China. Phylogenetic analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region revealed the closest relatives of the strains are three described species: , and . The novel species differed from the type strains of these three species by 12 to 22 nucleotide substitutions and 1 gap (~2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!