J Cell Biochem
College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China.
Published: September 2023
Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.30453 | DOI Listing |
Int J Biol Macromol
January 2025
College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China. Electronic address:
N6-methyladenosine (mA), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of mA modification on muscle development. In this study, we make observation that the levels of mA and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts.
View Article and Find Full Text PDFCancer Lett
January 2025
Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Electronic address:
Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Dermatology Department, Shanghai Zhongye Hospital, Shanghai, China.
Background: By far, one of the best treatments for myocardial ischemia is reperfusion therapy. The primary liposoluble component of Danshen, a traditional Chinese herbal remedy, Tanshinone ⅡA, has been shown to have cardiac healing properties. The purpose of this work is to investigate the processes by which Tanshinone ⅡA influences myocardial ischemia-reperfusion injury (MIRI) in the H9C2 cardiac myoblast cell line, as well as the association between Tanshinone ⅡA and MIRI.
View Article and Find Full Text PDFZhongguo Yi Xue Ke Xue Yuan Xue Bao
December 2024
Health and Medical Department, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.
Sarcopenia is an age-related degenerative skeletal muscle disorder characterized by the loss of skeletal muscle mass and function during aging.Sarcopenia can impair the elderly's ability to perform daily activities and is associated with high risks of falls,fractures,and hospitalization.It seriously affects the quality of life of the elderly and becomes one of the major health problems in the aging society.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Myoblasts serve as the fundamental building blocks of muscle fibers, and there is a positive correlation between the diameter of myofibers during the juvenile phase and the rate of muscle growth, which does not change in adulthood. However, the molecular mechanisms governing myofiber diameter across various developmental stages in goats remain largely unclear.
Results: In this study, we examined miRNA expression in the longissimus dorsi muscle tissue of goats at two distinct ages: one month, a period characterized by robust muscle growth, and nine months, when muscle development plateaus in adulthood.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.