Objective: Sisal is a common stiff fibre produced around the world, corresponding to approximately 70% of the commercial production of all fibres of this type. The fibres are extracted from the leaves of Agave sisalana, from which approximately 4% of their weight is obtained, with the remaining 96% considered to be residues from the process of the sisal industry. The objective of this work was to obtain a polyphenol-enriched extract from the A. sisalana residue by ultrasonically assisted extraction, characterize it chemically, evaluate in vitro antioxidant activity, and develop safe and stable photoprotective formulations for future application in cosmetic preparations.
Methods: Ultrasonic extraction of solid plant material was performed using 50% ethanol/water (v/v). The extract was chemically characterized by high-performance liquid chromatography equipment associated with classical molecular networking and evaluated for in vitro antioxidant activity by different methodologies. Ten formulations were prepared, varying the component concentrations and the shear time. The 1.0% sisal extract was incorporated into the most stable formulations, and preliminary and accelerated stability were evaluated. The emulsions were investigated for safety by assessment of primary accumulated dermal irritability and sensitization and a dermatological clinical study of phototoxicity and photosensitization. The photoprotective formulations containing or not containing the extract that were stable after 90 days had their in vivo sun protection factor (SPF), UVA protection factor, critical wavelength, and protection against visible and blue light determined.
Results: Ultrasound extraction using 50% ethanol/water (EH 50) as an extractor vehicle showed the best yield. The extract exhibited a concentration of phenolic compounds (77.93 mg of equivalent to the standard gallic acid/g) and showed in vitro antioxidant activity. Emulsions without and with 1.0% sisal extract remained stable and safe. The addition of the extract to the photoprotective formulation statistically increased the SPF when compared to the formulation without the extract and offered protection against UVA radiation, critical wavelengths, and absorption of visible and blue light.
Conclusion: Based on the findings, the solid residue of A. sisalana may be indicated as a component of photoprotective and antioxidant cosmetic formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.12890 | DOI Listing |
Molecules
January 2023
Laboratory of Fundamental Sciences, University Amar Télidji of Laghouat, Road of Ghardaïa, Laghouat 03000, Algeria.
in folk medicine is used by Algerian traditional healers for treating a wide variety of diseases and conditions including dyspepsia, digestive problems, peptic ulcers, and, in particular, inflammatory diseases. The present study aimed to assess the phytochemical composition, in vitro antioxidant activity (using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS+, and reducing power methods), enzyme inhibitory activity (towards α-amylase and urease), antibacterial activity, and in vivo anti-inflammatory activity of the unripe fruit extracts of collected from different parts of the Djelfa region of Algeria. According to the findings, various aqueous extracts exhibited significant antioxidant and enzymatic activities in all tests, but showed that they have a weak inhibitory effect against all tested bacterial strains.
View Article and Find Full Text PDFMolecules
December 2021
Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria.
Our study evaluated the in vitro antioxidant properties, antibacterial and antifungal activities, anti-inflammatory properties, and chemical composition of the essential oils (EOs), total phenol, and total flavonoid of wild L. This study also determined the mineral (nutritional and toxic) elements in the plant. The EOs were extracted using three techniques-hydro distillation (HD), steam distillation (SD), and microwave-assisted distillation (MAD)-and were analyzed using chromatography coupled with flame ionization (GC-FID) and gas chromatography attached with mass spectrometry detector (GC-MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!