Introduction: Liquid preservation of boar semen is a highly preferred method for semen preservation in pig production. However, oxidative stress is the main challenge during the liquid preservation of boar semen in a time dependent manner. Therefore, supplementation of sperm with antioxidants during storage to protect them from oxidative stress has been the focus of recent research. Myo-inositol (Myo-Ins), the most active form of inositol, which belongs to the vitamin (Vit.) (B1 group has been shown to improve semen quality) (1). This study aimed to investigate whether Myo-Ins supplementation protects boar sperm in liquid preservation against oxidative stress and determine the appropriate concentration of Myo-Ins to be used in this regard.
Methods: Boar sperm was diluted with a semen extender with different concentrations of Myo-Ins (2, 4, 6, and 8 mg/mL) depending on the previous studies (1, 24). Sperm motility and viability, plasma membrane and acrosome integrity, mitochondrial membrane potential (MMP), semen time survival, and gene expression were measured and analyzed on days 0, 1, 3, 5, and 7 for the different samples.
Results: Different concentrations of Myo-Ins exerted different protective effects on the boar sperm quality. The addition of 2 mg/mL Myo-Ins resulted in higher sperm motility and viability, plasma membrane and acrosome integrity, MMP, and effective survival time. Investigation of mRNA expression patterns via qRT-PCR suggested that the 2 mg/mL Myo-Ins sample had increased expression of antioxidative genes.
Conclusion: The addition of Myo-Ins to semen extender improved the boar semen quality by decreasing the effects of oxidative stress during liquid preservation at 17°C. Additionally, 2 mg/mL is the optimum inclusion concentration of Myo-Ins for semen preservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411888 | PMC |
http://dx.doi.org/10.3389/fvets.2023.1150984 | DOI Listing |
Animals (Basel)
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
School of Life Science and Engineering, Foshan University, Foshan 528000, China.
Semen quality and persistence are critical for evaluating the usability of individual boars in AI, a standard practice in pig breeding. We conducted GWASs on various semen traits of Duroc boars, including MOT, DEN, ABN, MMP, AIR, and ROS levels. These traits were assessed using FCM and CASA.
View Article and Find Full Text PDFSci Rep
January 2025
College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
The Wannan black pig is a superior local breed in Anhui province, renowned for its exceptional meat quality and remarkable adaptability to various environmental conditions. Semen, being a crucial indicator of male sexual maturity and fertility, significantly influences the performance of breeding boars. The molecular basis for comprehending the fecundity of boars in practical production lies in understanding the disparities in sperm proteins among boars of varying ages.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
Sex-controlled sperm combined with artificial insemination allows animals to reproduce offspring according to the desired sex, accelerates the process of animal genetics and breeding and promotes the development of animal husbandry. However, the molecular markers for sexual sperm sorting are unusual. To identify the molecular markers of boar sperm sorting, proteomics and metabolomics techniques were applied to analyze the differences in proteins and metabolism between X and Y sperm.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China.
Background: Seminal plasma is an important component of semen and has a significant effect on sperm function. However, the relationship between seminal plasma and sperm freezing capacity has not been fully studied.
Purpose: Exploring metabolites and proteins related to the boar sperm freezing capacity in seminal plasma, by metabolomic and proteomic approaches, and directly verifying the protective effect of seminal plasma on the cryopreservation of boar sperm using high and low freezability seminal plasma as base freezing extender.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!