Background: Several case-control studies have suggested that global and loci-specific deoxyribonucleic acid (DNA) methylation in peripheral blood mononuclear cells (PBMCs) of DNA might be potential biomarkers of cancer diagnosis and prognosis. In this study, for the first time, we intended to assess the diagnostic power of the methylation level of tumor suppressor candidate 3 () gene promoter in patients with colorectal cancer (CRC).
Materials And Methods: In the current study, we quantitatively assessed the promoter methylation level of in PBMCs of 70 CRC cases and 75 non-cancerous subjects via methylation quantification of endonuclease-resistant DNA (MethyQESD) method.
Results: The methylation level of the was meaningfully higher in CRC cases than in non-CRC subjects (43.55 ± 21.80% vs. 16.07 ± 13.63%, respectively; < 0.001). The sensitivity and specificity of this gene for the detection of CRC were 88.6% and 76.0%, respectively. The receiver operating characteristic (ROC) curve examination discovered an area under the curve (AUC) of 0.880, representing a very high accuracy of the methylation marker in distinguishing CRC subjects from healthy individuals. However, there was no substantial diversity in methylation level between various CRC stages (: 0.088).
Conclusion: For CRC screening, PBMCs are a reliable source for DNA methylation analysis and promoter methylation can be utilized as a hopeful biomarker for early and non-invasive diagnosis of CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410437 | PMC |
http://dx.doi.org/10.4103/abr.abr_396_22 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:
It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agriculture, Guangxi University, Nanning 530004, China. Electronic address:
Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.
View Article and Find Full Text PDFCancer Lett
January 2025
Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!