Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass.

Plant Cell Environ

State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.

Published: November 2023

Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14694DOI Listing

Publication Analysis

Top Keywords

m × r interaction
12
rhizosphere selection
8
plant biomass
8
rhizosphere microbes
8
plant growth
8
plant productivity
8
rhizosphere
6
plant
6
agricultural tillage
4
tillage practice
4

Similar Publications

The interaction of bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge.

Proc Natl Acad Sci U S A

January 2025

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!