Flame-retardant coatings have attracted increasing attention in mitigating the fire threat of flammable polymer materials. Their durable application inevitably provides high resistance to various complex environments, however, discarded stable materials will turn into another man-made waste disaster. The paradigm shift toward a sustainable future is to combine durability and recyclability of coatings. Herein, we demonstrate a biomimetic coating that reversibly captures active flame-retardant nanomaterials by flocculation assembly using anionic polyacrylamide covering the polyurethane foam surface. Strong hydrogen bonding and microstructural interlocking provide the coating with high durability under complex harsh conditions (underwater, chemical exposure, hydrothermal aging, long-term external extrusion, ). Meanwhile, the disassembly/reorganization of the coating can be easily repeated in response to pH stimulation with a recycling rate of 97%. The experiments and theoretical calculations reveal the mechanism of the reversible flocculation assembly. This biomimetic strategy of responsive flocculation assembly opens the way for functional coatings with integrated durability and recyclability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh00720k | DOI Listing |
Sci Total Environ
February 2025
Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:
The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:
It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.
View Article and Find Full Text PDFFood Res Int
December 2024
College of Life Science, Sichuan Normal University, Chengdu, China. Electronic address:
ACS Appl Mater Interfaces
November 2024
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442, China.
Sci Total Environ
December 2024
Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Road, Hong Kong, China; School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Macao. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!