Allenes (R C=C=CR ) have been traditionally perceived to feature localized orthogonal π-bonds between the carbon centres. We have carried out quantum-mechanical studies of the organometallic allenes envisioned by the isolobal replacement of the terminal CH groups by the d Fe(CO) fragment. Our studies have identified two organometallic allenes viz. D symmetric [(μ-C)(Fe(CO) ) ] (2) and D symmetric [(μ-C)(Fe(CO) ) ] (3) with trigonal bipyramidal coordination at the Fe atoms. Compound 2 features the bridging carbon atom in an equatorial position with respect to the ligands on the TM centre, while 3 features the central carbon atom in an axial position. The bis-pseudoallylic anionic delocalisation proposed in the C2-C1-C3 spine of organic allene is retained in the organometallic allene 2, and is transformed to a typical three-centre bis-allylic anionic delocalisation in the organometallic allene 3. The topological analysis of electron density also indicates a bis-allylic anionic type delocalisation in the organometallic allenes. The quantitative bonding analysis using the EDA-NOCV method suggests a transition from classical electron-sharing bonding between the central carbon atom and the terminal groups in 1 to donor-acceptor bonding in 3. Meanwhile, both electron-sharing and donor-acceptor bonding models are found to be probable heuristic bonding representations in the organometallic allene 2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300528DOI Listing

Publication Analysis

Top Keywords

organometallic allene
16
organometallic allenes
12
carbon atom
12
bridging carbon
8
classical electron-sharing
8
electron-sharing bonding
8
terminal groups
8
symmetric [μ-cfeco
8
central carbon
8
anionic delocalisation
8

Similar Publications

A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86% yield, >98:2 chemo- and regioselectivity, >98:2 dr and >99.5:0.

View Article and Find Full Text PDF

Alkynylallenes offer the varied reactivity patterns of two different multiple bond linkages either separately or in concert. Initially, a short overview of their syntheses, structures, rearrangement mechanisms and synthetic utility, especially when treated with transition metal reagents such as gold(I), silver(I), platinum metals or metal carbonyls, is presented. Subsequently, we focus on the particular case of 1,2-dien-5-ynes (propargylallenes), whereby the shortness of the single atom bridge, and the consequent proximity of the allenyl and alkynyl moieties, facilitates metal-mediated interactions between them.

View Article and Find Full Text PDF

The addition of phosphines (PR) to Michael acceptors is a key step in many Lewis-base catalysed reactions. The kinetics of the reactions of ten phosphines with ethyl acrylate, ethyl allenoate, ethyl propiolate, ethenesulfonyl fluoride, and ethyl 2-butynoate in dichloromethane at 20 °C was followed by photometric and NMR spectroscopic methods. The experimentally determined second-order rate constants show that electronic effects in sterically unencumbered phosphines affect their nucleophilicity towards different classes of Michael acceptors in the same ordering.

View Article and Find Full Text PDF

Antiaromatic 2-Azaboroles with πσ Electronic Configuration.

J Am Chem Soc

November 2024

Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Similar to pyridine, which is a structural analog of benzene, 2-azaborole can be viewed as a structural analog of borole, in which the CH group at the 2-position is replaced by an N atom. Due to its unique πσ electronic configuration, it should exhibit Lewis acidity, antiaromaticity, as well as Lewis basicity simultaneously. However, this uniqueness also makes its synthesis and isolation particularly challenging.

View Article and Find Full Text PDF

Substrate-Controlled [8 + 3] Cycloaddition of Tropsulfimides and Tropones with Zwitterionic Allenyl Palladium Species Derived from Vinylidenecyclopropane-diesters.

J Org Chem

October 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.

A palladium-catalyzed regioselective [8 + 3] cycloaddition of tropsulfimides and tropones with vinylidenecyclopropane-diesters (VDCP-diesters) has been disclosed in this paper, affording decahydro-1-cyclohepta[]pyridine derivatives bearing an allene moiety or decahydro-1-cyclohepta[]pyran derivatives having a conjugated diene unit in moderate to good yields. The reactions proceed through a zwitterionic allenyl palladium species derived from VDCP-diesters. The substrate scopes have been investigated and the plausible reaction mechanisms have also been proposed according to the previous work, the first captured zwitterionic Pd-allenyl intermediate, and control experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!