Purpose: This study aims to develop and validate a deep learning radiomics nomogram (DLRN) for prediction of axillary lymph node metastasis (ALNM) in breast cancer patients.

Materials And Methods: We retrospectively enrolled 196 patients with non-specific invasive breast cancer confirmed by pathology, radiomics and deep learning features were extracted from unenhanced and biphasic (arterial and venous phase) contrast-enhanced CT, and the non-linear support vector machine was used to construct the radiomics signature and the deep learning signature, respectively. Next, a DLRN was developed with independent predictors and evaluated the performance of models in terms of discrimination and clinical utility.

Results: Multivariate logistic regression analysis showed that the radiomics signature, deep learning signature, and clinical n stage were independent predictors. The DLRN accurately predicted ALNM and yielded an area under the receiver operator characteristic curve of 0.893 (95% confidence interval, 0.814-0.972) in the validation set, with good calibration. Decision curve analysis confirmed that the DLRN had higher clinical utility than other predictors.

Conclusions: The DLRN had good predictive value for ALNM in breast cancer patients and provide valuable information for individual treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-023-01839-0DOI Listing

Publication Analysis

Top Keywords

deep learning
20
breast cancer
16
learning radiomics
8
radiomics nomogram
8
axillary lymph
8
lymph node
8
node metastasis
8
alnm breast
8
radiomics signature
8
signature deep
8

Similar Publications

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!