Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-023-01474-1DOI Listing

Publication Analysis

Top Keywords

common buckwheat
12
buckwheat
5
genome sequencing
4
sequencing reveals
4
reveals genetic
4
genetic architecture
4
architecture heterostyly
4
heterostyly domestication
4
domestication history
4
history common
4

Similar Publications

Food protein-induced enterocolitis syndrome (FPIES) is a non-immunoglobulin E (IgE)-mediated food allergy. IgE sensitization to the causative food is often not observed, and the rate of sensitization to other common foods is not exceptionally high. This report discusses the case of a boy being followed up for FPIES due to egg yolk, who developed a buckwheat allergy during the disease.

View Article and Find Full Text PDF

As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.

View Article and Find Full Text PDF

Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.

Plant Physiol Biochem

January 2025

Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium.

Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control.

View Article and Find Full Text PDF

Analysis of the MYB gene family in tartary buckwheat and functional investigation of FtPinG0005108900.01 in response to drought.

BMC Plant Biol

January 2025

State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.

Tartary buckwheat (Fagopyrum tataricum) is an important crop used for edible food and medicinal usage. Drought annually brings reduction in crop yield and quality, causing enormous economic losses. Transcription factors are often involved in the regulation of plant responses to environmental stresses.

View Article and Find Full Text PDF

Buckwheat ( Moench) originates from Central Asia and is widely distributed around the world. It is recognized as a versatile food crop due to its nutritional richness. Conducting a systematic analysis of the literature on buckwheat research can help scientific researchers achieve a better understanding of the current state, hotspots, and trends in this field, thereby promoting the sustainable development of buckwheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!