AI Article Synopsis

  • Plants need to communicate properly to grow faster when they wake up from being dormant.
  • Scientists found out that a specific protein called LoVIL1 helps open channels that allow this communication by stopping another protein called LoCALS3.
  • A new helper protein called LoNFYA7 works with LoVIL1 to make this process happen, which is important for the growth of lily bulbs after dormancy.

Article Abstract

In plants, restoring intercellular communication is required for cell activity in buds during the growth transition from slow to fast growth after dormancy release. However, the epigenetic regulation of this phenomenon is far from understood. Here we demonstrate that lily VERNALIZATION INSENSITIVE 3-LIKE 1 (LoVIL1) confers growth transition by mediating plasmodesmata opening via epigenetic repression of CALLOSE SYNTHASE 3 (LoCALS3). Moreover, we found that a novel transcription factor, NUCLEAR FACTOR Y, SUBUNIT A7 (LoNFYA7), is capable of recruiting the LoVIL1-Polycomb Repressive Complex 2 (PRC2) and enhancing H3K27me3 at the LoCALS3 locus by recognizing the CCAAT cis-element (Cce) of its promoter. The LoNFYA7-LoVIL1 module serves as a key player in orchestrating the phase transition from slow to fast growth in lily bulbs. These studies also indicate that LoVIL1 is a suitable marker for the bud-growth-transition trait following dormancy release in lily cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-023-01492-zDOI Listing

Publication Analysis

Top Keywords

callose synthase
8
lily bulbs
8
growth transition
8
transition slow
8
slow fast
8
fast growth
8
dormancy release
8
epigenetic silencing
4
silencing callose
4
synthase vil1
4

Similar Publications

Background: Silicon has an important role in regulating water management in plants. It is deposited in cell walls and creates a mechanical barrier against external factors. The aim of this study was to determine the role of silicon supplementation in the synthesis and distribution of callose in oilseed rape roots and to characterize the modifications of cell wall structure of these organs after exposure to drought stress.

View Article and Find Full Text PDF

Biofabricated selenium nanoparticles (Se-NPs) and sodium nitroprusside-derived nitric oxide (NO) singly or in combination was evaluated to improve tolerance to aluminum (Al) stress in rice (Oryza sativa L. cv. Swarna Sub1).

View Article and Find Full Text PDF

While UV-B radiation is beneficial to plant growth, it can also cause adverse effects. The pollen tube, a key component of plant reproduction with a tip growth mechanism, is an excellent cellular model for understanding how environmental stressors such as UV-B radiation affect plant cell growth. This research investigated the effect of UV-B on olive pollen both before and after germination.

View Article and Find Full Text PDF

is a significant pathogenic fungus that causes sugarcane Pokkah Boeng. Proteins secreted by pathogenic fungi can be delivered into hosts to suppress plant immunity and establish infection. However, there is still much to be discovered regarding 's secreted effectors in overcoming plant immunity.

View Article and Find Full Text PDF

Seed samples of two types of chickpea (Cicer arietinum Linn.), including variety A (NRCGR-4452) and variety B (local varieties), with different seed colors, were collected every five days for a total of four times during the seed development period. Non-targeted metabolome and transcriptome sequencing were conducted to identify differentially expressed genes and metabolites associated with chickpea seed coat color.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!