Excessive accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, which is an underlying cause of major crop losses and devastating human conditions. ER proteostasis surveillance is mediated by the conserved master regulator of the unfolded protein response (UPR), Inositol Requiring Enzyme 1 (IRE1), which determines cell fate by controlling pro-life and pro-death outcomes through as yet largely unknown mechanisms. Here we report that Arabidopsis IRE1 determines cell fate in ER stress by balancing the ubiquitin-proteasome system (UPS) and UPR through the plant-unique E3 ligase, PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1). Indeed, PIR1 loss leads to suppression of pro-death UPS and the lethal phenotype of an IRE1 loss-of-function mutant in unresolved ER stress in addition to activating pro-survival UPR. Specifically, in ER stress, PIR1 loss stabilizes ABI5, a basic leucine zipper (bZIP) transcription factor, that directly activates expression of the critical UPR regulator gene, bZIP60, triggering transcriptional cascades enhancing pro-survival UPR. Collectively, our results identify new cell fate effectors in plant ER stress by showing that IRE1's coordination of cell death and survival hinges on PIR1, a key pro-death component of the UPS, which controls ABI5, a pro-survival transcriptional activator of bZIP60.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481788PMC
http://dx.doi.org/10.1038/s41477-023-01480-3DOI Listing

Publication Analysis

Top Keywords

cell fate
16
endoplasmic reticulum
8
ire1 determines
8
determines cell
8
pir1 loss
8
pro-survival upr
8
stress
6
cell
5
upr
5
ire1-proteasome system
4

Similar Publications

Tension-induced organelle stress: an emerging target in fibrosis.

Trends Pharmacol Sci

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.

View Article and Find Full Text PDF

Antigen affinity and site of immunization dictate B cell recall responses.

Cell Rep

January 2025

Department of Microbiology, Tumor and Cell Biology, Division of Virology and Immunology, Karolinska Institutet, 171 65 Solna, Sweden. Electronic address:

Protective antibodies against HIV-1 require unusually high levels of somatic mutations introduced in germinal centers (GCs). To achieve this, a sequential vaccination approach was proposed. Using HIV-1 antibody knockin mice with fate-mapping genes, we examined if antigen affinity affects the outcome of B cell recall responses.

View Article and Find Full Text PDF

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Elongator is a microtubule polymerase selective for polyglutamylated tubulin.

EMBO J

January 2025

Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.

Elongator is a tRNA-modifying complex that regulates protein translation. Recently, a moonlighting function of Elongator has been identified in regulating the polarization of the microtubule cytoskeleton during asymmetric cell division. Elongator induces symmetry breaking of the anaphase midzone by selectively stabilizing microtubules on one side of the spindle, contributing to the downstream polarized segregation of cell-fate determinants, and therefore to cell fate determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!