Wild barley, from "Evolution Canyon (EC)" in Mount Carmel, Israel, are ideal models for cereal chromosome evolution studies. Here, the wild barley EC_S1 is from the south slope with higher daily temperatures and drought, while EC_N1 is from the north slope with a cooler climate and higher relative humidity, which results in a differentiated selection due to contrasting environments. We assembled a 5.03 Gb genome with contig N50 of 3.53 Mb for wild barley EC_S1 and a 5.05 Gb genome with contig N50 of 3.45 Mb for EC_N1 using 145 Gb and 160.0 Gb Illumina sequencing data, 295.6 Gb and 285.35 Gb Nanopore sequencing data and 555.1 Gb and 514.5 Gb Hi-C sequencing data, respectively. BUSCOs and CEGMA evaluation suggested highly complete assemblies. Using full-length transcriptome data, we predicted 39,179 and 38,373 high-confidence genes in EC_S1 and EC_N1, in which 93.6% and 95.2% were functionally annotated, respectively. We annotated repetitive elements and non-coding RNAs. These two wild barley genome assemblies will provide a rich gene pool for domesticated barley.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415357 | PMC |
http://dx.doi.org/10.1038/s41597-023-02434-2 | DOI Listing |
Int J Mol Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Perth, Australia.
Background: Seed dormancy is a critical evolutionary trait that enhances the persistence of plant populations under both natural and managed conditions. It is influenced by genetic and environmental factors, with crop management practices like tillage and herbicide use reportedly selecting for increased seed dormancy in weeds. This study aimed to compare the success of seed dormancy breaking methods between weed populations collected from intensively managed crop fields and unmanaged ruderal locations.
View Article and Find Full Text PDFNew Phytol
December 2024
Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-11, 24118, Kiel, Germany.
The barley disease Septoria Speckled Leaf Blotch, caused by the fungus Zymoseptoria passerinii, last appeared in North America in the early 2000s. Although rare in crops, field sampling of wild grasses in the Middle East revealed the disease persistence in wild barley. Identification of Z.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!