AI Article Synopsis

  • U7 snRNP is a crucial endonuclease involved in processing histone pre-mRNAs in metazoans and has a unique composition compared to other spliceosomal snRNPs, lacking certain subunits and incorporating Lsm10 and Lsm11.
  • Recent research reveals that Lsm10 and Lsm11 interact with the methylosome complex, which includes PRMT5, involved in methylating proteins during assembly processes.
  • PRMT5 not only methylates specific arginine residues in Lsm11 but also modifies an arginine in SmE, suggesting that the unique methylation patterns of these proteins may be significant for the U7 snRNP assembly process.

Article Abstract

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578488PMC
http://dx.doi.org/10.1261/rna.079709.123DOI Listing

Publication Analysis

Top Keywords

spliceosomal snrnps
12
lsm11 sme
8
lsm10 lsm11
8
snrnp
5
lsm11
5
vitro methylation
4
methylation snrnp
4
snrnp subunits
4
subunits lsm11
4
sme
4

Similar Publications

Structural basis of 5' splice site recognition by the minor spliceosome.

Mol Cell

January 2025

European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:

The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.

View Article and Find Full Text PDF

Unlabelled: The maturation of RNA is mediated by the coordinated actions of RNA-binding proteins through post-transcriptional pre-mRNA processing. This process is a central regulatory mechanism for gene expression and plays a crucial role in the development of complex biological systems. MYC directly upregulates transcription of genes encoding the core components of pre-mRNA splicing machinery.

View Article and Find Full Text PDF

SF3B1 thermostability as an assay for splicing inhibitor interactions.

J Biol Chem

December 2024

Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, California, USA. Electronic address:

The spliceosome protein, SF3B1 associates with U2 snRNP during early spliceosome assembly for pre-mRNA splicing. Frequent somatic mutations in SF3B1 observed in cancer necessitates characterization of its role in identifying the branchpoint adenosine of introns. Remarkably, SF3B1 is the target of three distinct natural product drugs, each identified by their potent anti-tumor properties.

View Article and Find Full Text PDF

Association between arthropathies and postpartum hemorrhage: a bidirectional Mendelian randomization study.

Front Genet

December 2024

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.

Background: Research links arthropathies with adverse pregnancy outcomes. This study aims to explore its connection to postpartum hemorrhage (PPH) through Mendelian randomization (MR) analysis.

Methods: The study used GWAS data from the IEU OpenGWAS database for PPH and arthropathies.

View Article and Find Full Text PDF
Article Synopsis
  • The lab has been studying RNA-binding proteins (RBPs) and their complexes (RNPs) since the 1980s, focusing on their roles in regulating gene expression after transcription.* -
  • Research uncovered links between RBPs, specific diseases like fragile X syndrome and spinal muscular atrophy, highlighting the connection between RNA biology and health conditions.* -
  • The findings show that the diverse range of RNAs and RBPs can lead to increased complexity and potential disorders, suggesting a promising area for future research and discoveries in RNA science.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!