Malnutrition is prevalent in people with upper gastrointestinal (GI) cancers and is associated with shorter survival and poor quality of life. In order to effectively prevent or treat malnutrition, nutrition interventions must ensure appropriate energy provision to meet daily metabolic demands. In practice, the energy needs of people with cancer are frequently estimated from predictive equations which are not cancer-specific and are demonstrated to be inaccurate in this population. The purpose of this scoping review was to synthesize the existing evidence regarding energy expenditure in people with upper GI cancer. Three databases (Ovid MEDLINE, Embase via Ovid, CINAHL plus) were systematically searched to identify studies reporting on resting energy expenditure using indirect calorimetry and total energy expenditure using doubly labeled water (DLW) in adults with any stage of upper GI cancer at any point from diagnosis. A total of 57 original research studies involving 2,125 individuals with cancer of the esophagus, stomach, pancreas, biliary tract, or liver were eligible for inclusion. All studies used indirect calorimetry, and one study used DLW to measure energy expenditure, which was reported unadjusted in 42 studies, adjusted for body weight in 32 studies, and adjusted for fat-free mass in 13 studies. Energy expenditure in upper GI cancer was compared with noncancer controls in 19 studies and measured compared with predicted energy expenditure reported in 31 studies. There was heterogeneity in study design and in reporting of important clinical characteristics between studies. There was also substantial variation in energy expenditure between studies and within and between cancer types. Given this heterogeneity and known inaccuracies of predictive equations in patients with cancer, energy expenditure should be measured in practice wherever feasible. Additional research in cohorts defined by cancer type, stage, and treatment is needed to further characterize energy expenditure in upper GI cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721480 | PMC |
http://dx.doi.org/10.1016/j.advnut.2023.08.002 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!