Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traditional air quality analysis and prediction methods depend on the statistical and numerical analyses of historical air quality data with more information related to a specific region; therefore, the results are unsatisfactory. In particular, fine particulate matter (PM, PM) in the atmosphere is a major concern for human health. The modelling (analysis and prediction) of particulate matter concentrations remains unsatisfactory owing to the rapid increase in urbanization and industrialization. In the present study, we reconstructed a prediction model for both PM and PM with varying meteorological conditions (windspeed, temperature, precipitation, specific humidity, and air pressure) in a specific region. In this study, a prediction model was developed for the two observation stations in the study region. The analysis of particulate matter shows that seasonal variation is a primary factor that highly influences air pollutant concentrations in urban regions. Based on historical data, the maximum number of days (92 days in 2019) during the winter season exceeded the maximum permissible level of particulate matter (PM = 15 μg/m) concentration in air. The prediction results showed better performance of the Gaussian process regression model, with comparatively larger R values and smaller errors than the other models. Based on the analysis and prediction, these novel methods may enhance the accuracy of particulate matter prediction and influence policy- and decision-makers among pollution control authorities to protect air quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!