Labile carbon (C) input and fertilization have important consequences for soil organic matter (SOM) decomposition via the priming effect (PE), thereby impacting soil fertility and C sequestration. However, it remains largely uncertain on how the labile C input levels interact with long-term fertilization history to control PE intensity. To clarify this question, soil samples were collected from a 38-year fertilization field experiment (including five treatments: chemical nitrogen fertilizer, N; chemical fertilizer, NPK; manure, M; 200 % manure, M; NPK plus M, NPKM), with strongly altered soil physiochemical properties (i.e., soil aggregation, organic C and nutrient availability). These soil samples were incubated with three input levels of C-glucose (without glucose, control; low, 0.4 % SOC; high, 2.0 % SOC) to clarify the underlying mechanisms of PE. Results showed that the PE significantly increased with glucose input levels, with values increasing from negative or weak (-2.21 to 3.55 mg C g SOC) at low input level to strongly positive (5.62 to 8.57 mg C g SOC) at high input level across fertilization treatments. The increased PE intensity occurred along with decreased dissolved total nitrogen (DTN) contents and increased ratios of dissolved organic C to DTN, implying that the decline in N availability largely increased PE via enhanced microbial N mining from SOM. Compared to N and NPK treatments, the PE was significantly lower in the manure-amendment treatments, especially for low input level, due to more stable SOM by aggregate protection and higher N and phosphorus availability. These results suggested that manure application could alleviate SOM priming via increased soil C stability and nutrient availability. Collectively, our findings emphasize the importance of long-term fertilization-driven changes in labile C inputs, SOM stability, and nutrient availability in regulating PE and soil C dynamics. This knowledge advances our understanding of the long-term fertilization management for soil C sequestration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166175 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
Climate change significantly impacts the risk of eutrophication and, consequently, chlorophyll-a (Chl-a) concentrations. Understanding the impact of water flows is a crucial first step in developing insights into future patterns of change and associated risks. In this study, the Statistical DownScaling Model (SDSM)-a widely used daily downscaling method-is implemented to produce downscaled local climate variables, which serve as input for simulating future hydro-climate conditions using a hydrological model.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay, China.
Carbon neutrality has gained considerable attention globally, and the impact of environmental policy on businesses has been extensively studied. However, the mechanism through which environmental policy affects production efficiency within the enterprise remains unclear. The objectives of this paper are: 1.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
This study reconstructs the environmental history of Xincun Lagoon over the past 167 years using sediment core XCW, employing Cu/Zn as a proxy for redox changes. Time-series analysis of Cu/Zn ratios reveals a significant decline (linear regression slope = -0.00082, p < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!