A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expression dosage effects of a small number of genes after the artificial doubling of weeping forsythia. | LitMetric

Expression dosage effects of a small number of genes after the artificial doubling of weeping forsythia.

Plant Physiol Biochem

College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China. Electronic address:

Published: September 2023

Whole genome doubling (WGD) plays a critical role in plant evolution, yet the mechanisms underlying the maintenance of overall equilibrium following an artificial doubling event, as well as its impact on phenotype and adaptability, remain unclear. By comparing the gene expression of naturally occurring weeping forsythia diploids and colchicine-induced autotetraploids under normal growth conditions and cold stress, we identified gene expression dosage responses resulting from ploidy change. Only a small proportion of effectively expressed genes showed dosage effect, and most genes did not exhibit significant expression differences. However, the genes that showed expression dosage effect were largely random. The autotetraploids had slower overall growth rates, possibly resulting from negative gene dosage effects on zeatin synthesis and multiple metabolic delays caused by other negative dosage genes. Our comparative analysis of cold response genes in diploids and autotetraploids revealed that genes related to "response to abscisic acid" and "cold acclimation" were key factors contributing to greater cold tolerance in the autotetraploids. In particular, gene expression related to "cold acclimation" might mitigate the effects of cold stress. Taken together, our findings suggested that overall gene expression equilibrium following WGD of weeping forsythia autotetraploids was achieved through the inactivation of the majority of duplicated genes. Our research provides new insights into the mechanisms regulating expression dosage balance following polyploidization events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.107945DOI Listing

Publication Analysis

Top Keywords

expression dosage
16
gene expression
16
weeping forsythia
12
expression
8
dosage effects
8
genes
8
artificial doubling
8
cold stress
8
dosage genes
8
"cold acclimation"
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!