Alloying and structural design provide flexibility to modulate performance of biodegradable porous implants manufactured by laser powder bed fusion (L-PBF). Herein, bulk Zn-0.8Li-0.1Mg was first fabricated to indicate the influence of the ternary alloy system on strengthening effect. Porous scaffolds with different porosities, including 60 % (P60), 70 % (P70) and 80 % (P80), were designed and fabricated to study the influence of porosity on mechanical properties, in vitro degradation behavior, biocompatibility and osteogenic ability. Pure Zn (Zn-P70) scaffolds with a porosity of 70 % were utilized for the comparison. The results showed Zn-0.8Li-0.1Mg bulks had an ultimate tensile strength of 460.78 ± 5.79 MPa, which was more than 3 times that of pure Zn ones and was the highest value ever reported for Zn alloys fabricated by L-PBF. The compressive strength (CS) and elastic modulus (E) of scaffolds decreased with increasing porosities. The CS of P70 scaffolds was 24.59 MPa, more than 2 times that of Zn-P70. The weight loss of scaffolds during in vitro immersion increased with increasing porosities. Compared with Zn-P70, a lower weight loss, better biocompatibility and improved osteogenic ability were observed for P70 scaffolds. P70 scaffolds also exhibited the best biocompatibility and osteogenic ability among all the used porosities. Influence mechanism of alloying elements and structural porosities on mechanical behaviors, in vitro biodegradation behavior, biocompatibility and osteogenic ability of scaffolds were discussed using finite element analysis and the characterization of degradation products. The results indicated that the proper design of alloying and porosity made Zn-0.8Li-0.1Mg scaffolds promising for biodegradable applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213571DOI Listing

Publication Analysis

Top Keywords

osteogenic ability
20
biocompatibility osteogenic
16
behavior biocompatibility
12
p70 scaffolds
12
scaffolds
10
mechanical properties
8
properties vitro
8
increasing porosities
8
weight loss
8
biocompatibility
5

Similar Publications

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Phytochemicals, which are bioactive compounds contained in fruits, vegetables, and teas, have a positive effect on human health by having anti-inflammatory, antioxidant, and anticarcinogenic effects. Several studies have highlighted the ability of bioactive compounds to activate key cellular enzymes associated with important signaling pathways related to cell division and proliferation, as well as their role in inflammatory and immunological responses. Some phytochemicals are associated with increased proliferation, differentiation, and expression of markers related to osteogenesis, bone formation, and mineralization by activating various signaling pathways.

View Article and Find Full Text PDF

Aspirin Inhibits the In Vitro Adipogenic Differentiation of Human Adipose Tissue-Derived Stem Cells in a Dose-Dependent Manner.

Int J Mol Sci

January 2025

Division of Hand Surgery, Plastic Surgery and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany.

Aspirin (ASA) is one of the most used medications worldwide and has shown various effects on cellular processes, including stem cell differentiation. However, the effect of ASA on adipogenesis of adipose tissue-derived stem cells (ASCs) remains largely unknown. Considering the potential application of ASCs in regenerative medicine and cell-based therapies, this study investigates the effects of ASA on adipogenic differentiation in human ASCs.

View Article and Find Full Text PDF

Urine-derived mesenchymal stromal/stem cells (USCs) could be a valuable source of cells in regenerative medicine because urine can be easily collected non-invasively. In this paper, USCs were isolated from both healthy dogs and dogs affected by chronic kidney disease (CKD), and the efficacy of collection methods (spontaneous micturition, bladder catheterization, and cystocentesis) were compared. Isolated cells were cultured in the presence of platelet-rich plasma and studied for their proliferative capacity (growth curve, doubling time, and colony forming unit), differentiation properties, expression of mesenchymal markers, and Klotho protein.

View Article and Find Full Text PDF

Objective: To initially investigate the function of neuronal pentraxin 1 () gene on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).

Methods: hBMSCs were induced to undergo osteogenic differentiation, and then RNA was collected at different time points, namely 0, 3, 7, 10 and 14 d. The mRNA expression levels of key genes related with osteogenic differentiation, including runt-related transcription factor 2 (), alkaline phosphatase (), osteocalcin (), and , were detected on the basis of quantitative real-time polymerase chain reaction (qPCR) technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!