As breast cancer is a multistage progression disease resulting from a genetic sequence of mutations, understanding the genes whose expression values increase or decrease monotonically across pathologic stages can provide insightful clues about how breast cancer initiates and advances. Utilizing variational autoencoder (VAE) networks in conjunction with traditional statistical testing, we successfully ascertain long non-coding RNAs (lncRNAs) that exhibit monotonically differential expression values in breast cancer. Subsequently, we validate that the identified lncRNAs really present monotonically changed patterns. The proposed procedure identified 248 monotonically decreasing expressed and 115 increasing expressed lncRNAs. They correspond to a total of 65 and 33 genes respectively, which possess unique known gene symbols. Some of them are associated with breast cancer, as suggested by previous studies. Furthermore, enriched pathways by the target mRNAs of these identified lncRNAs include the Wnt signaling pathway, human papillomavirus (HPV) infection, and Rap 1 signaling pathway, which have been shown to play crucial roles in the initiation and development of breast cancer. Additionally, we trained a VAE model using the entire dataset. To assess the effectiveness of the identified lncRNAs, a microarray dataset was employed as the test set. The results obtained from this evaluation were deemed satisfactory. In conclusion, further experimental validation of these lncRNAs with a large-sized study is warranted, and the proposed procedure is highly recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414641PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289971PLOS

Publication Analysis

Top Keywords

breast cancer
24
identified lncrnas
12
long non-coding
8
expression values
8
proposed procedure
8
signaling pathway
8
breast
6
cancer
6
lncrnas
6
identification monotonically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!