Organic soil amendments are used to improve soil quality and mitigate climate change. However, their effects on soil structure, nutrient and water retention as well as greenhouse gas (GHG) emissions are still poorly understood. The purpose of this study was to determine the residual effects of a single field application of four ligneous soil amendments on soil structure and GHG emissions. We conducted a laboratory incubation experiment using soil samples collected from an ongoing soil-amendment field experiment at Qvidja Farm in south-west Finland, two years after a single application of four ligneous biomasses. Specifically, two biochars (willow and spruce) produced via slow pyrolysis, and two mixed pulp sludges from paper industry side-streams were applied at a rate of 9-22 Mg ha-1 mixed in the top 0.1 m soil layer. An unamended fertilized soil was used as a control. The laboratory incubation lasted for 33 days, during which the samples were kept at room temperature (21°C) and at 20%, 40%, 70% or 100% water holding capacity. Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes were measured periodically after 1, 5, 12, 20 and 33 days of incubation. The application of ligneous soil amendments increased the pH of the sampled soils by 0.4-0.8 units, whereas the effects on soil organic carbon content and soil structure varied between treatments. The GHG exchange was dominated by CO2 emissions, which were mainly unaffected by the soil amendment treatments. The contribution of soil CH4 exchange was negligible (nearly no emissions) compared to soil CO2 and N2O emissions. The soil N2O emissions exhibited a positive exponential relationship with soil moisture. Overall, the soil amendments reduced N2O emissions on average by 13%, 64%, 28%, and 37%, at the four soil moisture levels, respectively. Furthermore, the variation in N2O emissions between the amendments correlated positively with their liming effect. More specifically, the potential for the pulp sludge treatments to modulate N2O emissions was evident only in response to high water contents. This tendency to modulate N2O emissions was attributed to their capacity to increase soil pH and influence soil processes by persisting in the soil long after their application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414678 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284092 | PLOS |
J Environ Qual
January 2025
IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina.
Atmospheric nitrous oxide (NO) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO. NO emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of NO emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of NO emissions using structural equation modeling.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
Soil microorganisms are essential for maintaining ecosystem functionality, particularly through their role in the nitrogen (N) biogeochemical cycle. Thus, they also contribute to greenhouse gas emissions from soils. Microorganisms are sensitive indicators of soil health, as they respond rapidly to disturbances caused by factors like unsustainable agricultural practices or industrial activities, such as mining.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Forestry, Gansu Agricultural University, Lanzhou, China.
Alpine wet meadows are known as NO sinks due to nitrogen (N) limitation. However, phosphate addition and N deposition can modulate this limitation, and little is known about their combinative effects on NO emission from the Qinghai-Tibet Plateau in wet meadows. This study used natural wet meadow as the control treatment (CK) and conducted experiments with N (CONH addition, N15), P (NaHPO addition, P15), and their combinations (CONH and NaHPO addition, N15P15) to investigate how N and P supplementation affected soil NO emissions in wet meadow of QTP.
View Article and Find Full Text PDFJ Environ Manage
December 2024
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:
The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH, NO, NH, and HS by 52.
View Article and Find Full Text PDFHorizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!