Lysins (peptidoglycan hydrolases) are promising new protein-based antimicrobial candidates under development to address rising antibiotic resistance encountered among pathogenic bacteria. Exebacase is an antistaphylococcal lysin and the first member of the lysin class to have entered clinical trials in the United States. In this study, the bacteriolytic activity of exebacase was characterized with time-kill assays, turbidity reduction assays, and microscopy. Three methicillin-susceptible and three methicillin-resistant isolates were tested in time-kill assays over a range of concentrations from 0.25 to 8 × MIC. Exebacase demonstrated a concentration-dependent killing and showed bactericidal activity (≥3 log kill achieved relative to the starting inoculum) within 3 h at 1 × MIC against all strains tested. Dose-dependent lysis by exebacase was, furthermore, observed in the turbidity reduction assay, wherein decreases in initial OD of 50% were observed within ~15 min at concentrations as low as 4 µg/mL. Membrane dissolution, loss of cytoplasmic material, and lysis were confirmed by video and electron microscopy. The demonstrated rapid bacteriolytic effect of exebacase is an important distinguishing feature of this novel modality. IMPORTANCE To guide the development of an investigational new antibacterial entity, microbiological data are required to evaluate the killing kinetics against target organism(s). Exebacase is a lysin (peptidoglycan hydrolase) that represents a novel antimicrobial modality based on degradation of the cell wall of . Killing by exebacase was determined in multiple assay formats including time-kill assays, wherein reductions of viability of ≥3 log colony-forming units/mL were observed within 3 h for multiple different isolates tested, consistent with very rapid bactericidal activity. Rapid reductions in optical density were likewise observed in exebacase-treated cultures, which were visually consistent with microscopic observations of rapid lysis. Overall, exebacase provides a novel antimicrobial modality against , characterized by a rapid cidal and lytic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580946 | PMC |
http://dx.doi.org/10.1128/spectrum.01906-23 | DOI Listing |
Antimicrob Agents Chemother
January 2025
Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Foremost in the design of new β-lactamase inhibitors (BLIs) are the boronic acid transition state inhibitors (BATSIs). Two highly potent BATSIs being developed are S02030 and MB076 strategically designed to be active against cephalosporinases and carbapenemases, especially KPC. When combined with cefepime, S02030 and MB076 demonstrated potent antimicrobial activity against laboratory and clinical strains of expressing a variety of class A and class C β-lactamases, including and .
View Article and Find Full Text PDFMicrob Pathog
January 2025
Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea. Electronic address:
This study was designed to evaluate the combined antimicrobial activity of selected phage cocktail (MS2+T7 phages) and essential oils (cinnamon, clove, oregano, and thymol) against Escherichia coli ATCC 15597. To select most effective phages, the lytic abilities of individual phages (MS2, phiX174, and T7) and their phage combinations were assessed using the phage spot test and plaque assay at various multiplicity of infections (MOIs) ranging from 0.01 to 100.
View Article and Find Full Text PDFACS Omega
January 2025
Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India.
The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LA-Orn-βAcc-PEA, ; LA-Lys-βAcc-PEA, ; and LA-Arg-βAcc-PEA, in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both and methicillin-resistant (MRSA) and their multidrug resistant (MDR) clinical isolates.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand.
This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.
View Article and Find Full Text PDFMicroorganisms
January 2025
Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia.
The rise in antimicrobial resistance (AMR) in underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!