Aberrant DNA methylation is a critical regulator of gene expression in the development and progression of glioblastoma (GBM). However, the impact of methylation-driven gene PCDHB4 changes on GBM occurrence and progression remains unclear. Therefore, this study aimed to identify the PCDHB4 gene for early diagnosis and prognostic evaluation and clarify its functional role in GBM. Methylation-driven gene PCDHB4 was selected for GBM using the multi-omics integration method based on publicly available data sets. The diagnostic capabilities of PCDHB4 methylation and 5-hydroxymethylcytosines were validated in tissue and blood cell-free DNA (cfDNA) samples, respectively. Combined survival analysis of PCDHB4 methylation and immune infiltration cells evaluated the prognostic predictive performance of GBM patients. We identified that the PCDHB4 gene achieved high discriminative capabilities for GBM and normal tissues with an area under the curve value of 0.941. PCDHB4 hypermethylation was observed in cfDNA blood samples from GBM patients. Compared with GBM patients with PCDHB4 hypermethylation level, patients with PCDHB4 hypomethylation level had significantly poorer overall survival (p = 0.035). In addition, GBM patients with PCDHB4 hypermethylation and high infiltration of CD4 T cell activation level had a favorable survival (p = 0.026). Moreover, we demonstrated that mRNA expression of PCDHB4 was downregulated in GBM tissues and upregulated in GBM cell lines with PCDHB4 demethylation, and PCDHB4 overexpression inhibited GBM cell proliferation and migration. In summary, we discovered a novel methylation-driven gene PCDHB4 for the diagnosis and prognosis of GBM and demonstrated that PCDHB4 is a tumor suppressor in vitro experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23618DOI Listing

Publication Analysis

Top Keywords

methylation-driven gene
16
pcdhb4
16
gene pcdhb4
16
gbm patients
16
gbm
13
pcdhb4 hypermethylation
12
patients pcdhb4
12
tumor suppressor
8
diagnosis prognosis
8
pcdhb4 gene
8

Similar Publications

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Background: Deoxyribose nucleic acid (DNA) methylation is an important epigenetic modification that plays an important role in the occurrence and development of tumors. Identifying key methylation-driven genes that affect the prognosis of lung squamous cell carcinoma (LUSC) can provide direction for targeted therapy research.

Methods And Results: Methylation and RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Constructing methylation-driven ceRNA networks unveil tumor heterogeneity and predict patient prognosis.

Hum Mol Genet

November 2024

College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.

Cancer development involves a complex interplay between genetic and epigenetic factors, with emerging evidence highlighting the pivotal role of competitive endogenous RNA (ceRNA) networks in regulating gene expression. However, the influence of ceRNA networks by aberrant DNA methylation remains incompletely understood. In our study, we proposed DMceNet, a computational method to characterize the effects of DNA methylation on ceRNA regulatory mechanisms and apply it across eight prevalent cancers.

View Article and Find Full Text PDF

Background And Aims: This study aimed to develop a prognostic model based on DNA methylation-driven genes for patients with early-stage gastric cancer and to examine immune infiltration and function across varying risk levels.

Methods: We analyzed data from stage I/II gastric cancer patients in The Cancer Genome Atlas which included clinical details, mRNA expression profiles, and level 3 DNA methylation array data. Using the empirical Bayes method of the limma package, we identified differentially expressed genes (DEGs), and the MethylMix package facilitated the identification of DNA methylation-driven genes (DMGs).

View Article and Find Full Text PDF

Aberrant DNA methylation plays a crucial role in breast cancer progression by regulating gene expression. However, the regulatory pattern of DNA methylation in long noncoding RNAs (lncRNAs) for breast cancer remains unclear. In this study, we integrated gene expression, DNA methylation, and clinical data from breast cancer patients included in The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!