Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407046PMC
http://dx.doi.org/10.1002/mco2.339DOI Listing

Publication Analysis

Top Keywords

cancer immunotherapy
12
antitumor immunity
8
cancer
6
lipid-based nanoparticles
4
nanoparticles drug
4
drug delivery
4
delivery systems
4
systems cancer
4
immunotherapy
4
immunotherapy immune
4

Similar Publications

Introduction: Despite the rapid evolution in management of metastatic renal cell carcinoma (mRCC) over the past decade, challenges remain in accessing new therapies in some parts of the world. Despite therapeutic advancements, attrition rates remain persistently high. This study aims to assess the treatment patterns and attrition rates of patients with mRCC in oncology clinics across Turkey.

View Article and Find Full Text PDF

Dura immunity configures leptomeningeal metastasis immunosuppression for cerebrospinal fluid barrier invasion.

Nat Cancer

December 2024

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The cerebrospinal fluid (CSF) border accommodates diverse immune cells that permit peripheral cell immunosurveillance. However, the intricate interactions between CSF immune cells and infiltrating cancer cells remain poorly understood. Here we use fate mapping, longitudinal time-lapse imaging and multiomics technologies to investigate the precise origin, cellular crosstalk and molecular landscape of macrophages that contribute to leptomeningeal metastasis (LM) progression.

View Article and Find Full Text PDF

cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy.

View Article and Find Full Text PDF

Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer.

J Transl Med

December 2024

Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.

The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.

View Article and Find Full Text PDF

-driven CX3CR1 PD-L1 phagocytes route to tumor tissues and reshape tumor microenvironment.

Gut Microbes

December 2025

Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

The intracellular bacterium (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1 PMNs in CRC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!