Introduction: In recent years, studies have shown that GABA has a certain therapeutic effect on acute lung injury (ALI), but its specific mechanism has not been fully elucidated. The study was designed to investigate the protective effect and mechanism of γ-aminobutyric acid (GABA) on ALI induced by lipopolysaccharide (LPS) in mice.

Material And Methods: C57BL/6 mice were randomly divided into a control group, LPS group, LPS + GABA (10 mg/kg) group and LPS + dexamethasone (Dex, 5 mg/kg) group. The survival rate of each group was observed at different time points after modeling. The levels of tumor necrosis factor α (TNF-α), interleukin (IL) 1β, 10, myeloperoxidase (MPO) and the cell count and protein concentration in bronchoalveolar lavage fluid (BALF) were measured. Lung histopathology and the expression of GABA receptors were observed by HE staining and immunohistochemistry respectively. Lung water content was assessed by wet-dry weight ratio.

Results: GABA could significantly improve the survival rate and prolong the survival time of animals, alleviate the degree of inflammatory injury and pulmonary edema, reduce the content of MPO, down-regulate the levels of pro-inflammatory cytokines IL-1β and TNF-α, and up-regulate the expression of anti-inflammatory cytokine IL-10. Moreover, GABA could significantly decrease the expression of type A receptors and enhance type B receptors.

Conclusions: GABA can effectively alleviate ALI induced by LPS in mice, and its effect may be related to the upregulation of type B receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408013PMC
http://dx.doi.org/10.5114/aoms.2019.89984DOI Listing

Publication Analysis

Top Keywords

type receptors
12
group lps
12
γ-aminobutyric acid
8
acute lung
8
lung injury
8
ali induced
8
mg/kg group
8
survival rate
8
gaba
7
lps
5

Similar Publications

The present study investigated the role of the neurotensin/NTS in the modulation of the lipopolysaccharide/LPS induced dysfunction of the sympatho-adrenal-medullary system/SAM using both the NTS receptor 1/NTSR agonist PD149163/PD and antagonist SR48692 /SR. Forty eight mice were maintained in eight groups; Group I/control, Groups II, III, IV, and VII received LPS for 5 days further Group III/IV/VII received PD low dose/PD, PD high dose /PD and SR for 28 days respectively. Group V/VI received similar only PD and PD dose respectively whereas Group VIII was exposed to only SR for 28 days.

View Article and Find Full Text PDF

Background: The identification of circulating potential biomarkers may help earlier diagnosis of breast cancer, which is critical for effective treatment and better disease outcomes. We aimed to study the role of circ-FAF1 as a diagnostic biomarker in female breast cancer using peripheral blood samples of these patients, and to investigate the relation between circ-FAF1 and different clinicopathological features of the included patients.

Methods And Results: This case-control study enrolled 60 female breast cancer patients and 60 age-matched healthy control subjects.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

Background: Sepsis is an infection-related systemic inflammation with high mortality rates. Activation of formyl peptide receptor 1 (FPR1) in immune cells can promote their chemotaxis and inflammatory response, which imbalances immune response during the process of sepsis. FPR1 blockade did diminish systemic inflammatory response during bacterial infection.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!