Outer membrane protein W (OmpW) is a less-known antigen with potential immunogenic properties. The epitopes of this protein are not well-identified yet. Therefore, in the present study, B- and T-cell epitopes of OmpW were found using comprehensive in silico and partially in vitro studies. The T-cell (both class-I and class-II) and B-cell (both linear and conformational) epitopes were predicted and screened through many bioinformatics approaches including the prediction of IFN-γ production, immunogenicity, toxicity, allergenicity, human similarity, and clustering. A single 15-mer epitopic peptide containing a linear B-cell and both classes of T-cell epitopes were found and used for further assays. For in vitro assays, patient- and healthy control-derived peripheral blood mononuclear cells were stimulated with the 15-mer peptide, Phytohemagglutinin, or medium alone, and cell proliferation and IFN-γ production assays were performed. The bioinformatics studies led to mapping OmpW epitopes and introducing a 15-mer peptide. In vitro assays to some extent showed its potency in cell proliferation but not in IFN-γ induction, although the responses were not very expressive and faced some questions/limitations. In general, in the current study, we mapped the most immunogenic epitopes of OmpW that may be used for future studies and also assayed one of these epitopes in vitro, which was shown to have an immunogenicity potential. However, the induced immune responses were not strong which suggests that the present peptide needs a series of biotechnological manipulations to be used as a potential vaccine candidate. More studies in this field are recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407128 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18614 | DOI Listing |
Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.
View Article and Find Full Text PDFUnlabelled: The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The bioactive peptides in Jinhua ham could be released into the broth during cooking. After comparing peptide antibacterial activity from Jinhua ham broth with varying cooking durations, the cooking-2-h broths were selected for further analysis using cation-exchange and reverse-phase-liquid chromatography. The purified peptide sequences were subsequently synthesized and tested for their antibacterial activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!