Bronchopulmonary dysplasia (BPD) is a common complication of prematurity and has no specific treatment option. Moreover, inflammation and fibrosis play a vital role in the development of BPD. Thus, this study aimed to explore the role of the anti-inflammatory and anti-fibrotic drug cryptotanshinone (CTS) in the treatment of inflammation and fibrosis in BPD. , Sprague-Dawley rats (male) were divided into air, hyperoxia and CTS groups with different dose interventions (7.5, 15, and 30 mg/kg). A BPD rat model was induced by continuous inhalation of hyperoxia (95%) for 7 days, during which different doses of CTS were injected intraperitoneally. Furthermore, histological examination, hydroxyproline content measurement, Western blot and real-time quantitative polymerase chain reaction were used to detect the levels of inflammation and fibrosis in the tissues. RAW264.7 cells exposed to 95% oxygen were collected and co-cultured with fibroblasts to determine the expression levels of α-SMA, collagen-Ⅰ and MMPs. The levels of pro-inflammatory cytokines such as TNF-α, IL-6 and pro-fibrotic factor TGF-β1 in the supernatants were measured using enzyme-linked immunosorbent assay. Haematoxylin and eosin staining revealed that CTS reduced the inflammatory response in rat lungs. Masson staining revealed that CTS alleviated the level of pulmonary fibrosis. CTS also reduced the levels of TNF-α, IL-6 and TGF-β1 along with the expression of the fibrosis marker α-SMA in lung tissue. Similarly, analysis revealed that CTS decreased the levels of TNF-α, IL-6 and TGF-β1 expressed in RAW 264.7 cells, and reduced α-SMA, collagen-Ⅰ, MMPs concentrations in HFL-1 cells co-cultured with the supernatant of RAW264.7 cells after hyperoxia. CTS can attenuate the hyperoxia-induced inflammatory response and the level of fibrosis by regulating the levels of inflammatory factors and fibrotic factor TGF-β1 expressed by macrophages, thereby highlighting the therapeutic potential of CTS in the treatment of BPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407416PMC
http://dx.doi.org/10.3389/fphar.2023.1192370DOI Listing

Publication Analysis

Top Keywords

inflammation fibrosis
16
raw2647 cells
12
tnf-α il-6
12
revealed cts
12
cts
9
hfl-1 cells
8
cts treatment
8
hyperoxia cts
8
α-sma collagen-Ⅰ
8
collagen-Ⅰ mmps
8

Similar Publications

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

The role of multimodality imaging in diabetic cardiomyopathy: a brief review.

Front Endocrinol (Lausanne)

December 2024

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.

Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the setting of diabetes mellitus without hypertension, coronary artery disease or valvular heart disease, is a well-recognized entity whose prevalence is certainly predicted to increase alongside the rising incidence and prevalence of diabetes mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and fibrosis. These perturbations lead to left ventricular hypertrophy with associated impaired relaxation early in the course of the disease, and eventually culminating in combined systolic and diastolic heart failure.

View Article and Find Full Text PDF

Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health.

View Article and Find Full Text PDF

PINK1 modulates Prdx2 to reduce lipotoxicity-induced apoptosis and attenuate cardiac dysfunction in heart failure mice with a preserved ejection fraction.

Clin Transl Med

January 2025

Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.

Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex condition characterized by metabolic dysfunction and myocardial lipotoxicity. The roles of PTEN-induced kinase 1 (PINK1) and peroxiredoxin-2 (Prdx2) in HFpEF pathogenesis remain unclear.

Objective: This study aimed to investigate the interaction between PINK1 and Prdx2 to mitigate cardiac diastolic dysfunction in HFpEF.

View Article and Find Full Text PDF

Angiotensin-1-converting enzyme (ACE) is a zinc-dependent carboxypeptidase of therapeutic interest for the treatment of hypertension, inflammation and fibrosis. It consists of two homologous N and C catalytic domains, nACE and cACE, respectively. Unfortunately, the current clinically available ACE inhibitors produce undesirable side effects due to the nonselective inhibition of these domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!