Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Primary care plays a vital role for individuals and families in accessing care, keeping well, and improving quality of life. However, the complexities and uncertainties in the primary care delivery system (e.g., patient no-shows/walk-ins, staffing shortage, COVID-19 pandemic) have brought significant challenges in its operations management, which can potentially lead to poor patient outcomes and negative primary care operations (e.g., loss of productivity, inefficiency). This paper presents a decision analytics approach developed based on predictive analytics and hybrid simulation to better facilitate management of the underlying complexities and uncertainties in primary care operations. A case study was conducted in a local family medicine clinic to demonstrate the use of this approach for patient no-show management. In this case study, a patient no-show prediction model was used in conjunction with an integrated agent-based and discrete-event simulation model to design and evaluate double-booking strategies. Using the predicted patient no-show information, a prediction-based double-booking strategy was created and compared against two other strategies, namely random and designated time. Scenario-based experiments were then conducted to examine the impacts of different double-booking strategies on clinic's operational outcomes, focusing on the trade-offs between the clinic productivity (measured by daily patient throughput) and efficiency (measured by visit cycle and patient wait time for doctor). The results showed that the best productivity-efficiency balance was derived under the prediction-based double-booking strategy. The proposed hybrid decision analytics approach has the potential to better support decision-making in primary care operations management and improve the system's performance. Further, it can be generalized in the context of various healthcare settings for broader applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408698 | PMC |
http://dx.doi.org/10.1016/j.cie.2023.109069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!