Yolk sac membranes of layer eggs were collected daily (n = 7-9) from day three of incubation to day three post-hatch, and mRNA expression and activities were quantified for key gluconeogenesis enzymes (glucose-6-phosphatase, fructose-1,6-bisphosphatase, cytosolic and mitochondrial phosphoenolpyruvate carboxykinases, and pyruvate carboxylase). Lactate, triglycerides, non-esterified fatty acids, glycogen, and glucose in the yolk sac membrane, and blood glucose levels were also measured. The mRNA expression and activity were detected for all enzymes. Differences in expression levels and enzyme activities seemed to reflect the embryo's developmental environment and physiological demands at different developmental stages. During the first week to the mid-second week of incubation, the expression and activity of gluconeogenic enzymes and lactate concentrations were high, suggesting an active period of gluconeogenesis from lactate, reflecting possible hypoxia in the embryo before completed formation of the chorioallantoic capillaries. From the mid-second week to mid-third week, when embryos were in an aerobic state, the triglyceride and non-esterified fatty acid contents increased in the yolk sac. Triglycerides from yolk lipids are typically hydrolyzed to produce non-esterified fatty acids as an energy source, whereas the glycerol skeleton is used for gluconeogenesis. In the late third week, when embryos were considered to re-enter an anaerobic state, the mRNA expression and enzyme activity of only glucose-6-phosphatase were high and the amount of glycogen in the yolk sac was reduced. Therefore, it is suggested that gluconeogenesis activity is low during this period, and the carbohydrates stored in the yolk sac membrane are secreted into the blood as energy for hatching. This study confirmed the role of the yolk sac membrane as a vital gluconeogenic organ during chicken egg incubation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406515PMC
http://dx.doi.org/10.2141/jpsa.2023020DOI Listing

Publication Analysis

Top Keywords

yolk sac
28
sac membrane
16
mrna expression
12
non-esterified fatty
12
enzyme activity
8
day three
8
fatty acids
8
expression activity
8
mid-second week
8
week embryos
8

Similar Publications

As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.

View Article and Find Full Text PDF

Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development.

Gene

January 2025

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.

View Article and Find Full Text PDF

Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.

View Article and Find Full Text PDF

Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae.

Aquat Toxicol

January 2025

Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model.

View Article and Find Full Text PDF

Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!