Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cone-beam computed tomography (CBCT) is a tool for dental imaging of impactions, maxillofacial discrepancies, facial trauma, and tumors. In addition, It is used in treatment planning for dental implants, orthognathic surgery, and general maxillofacial surgery. There are no standardized methods for utilizing CBCT dosimetry, and there is no consensus among dental and medical physics health professionals regarding dental CBCT imaging procedures. The eyes and thyroid glands are radiosensitive organs that lie outside the primary beam but receive a significant amount of radiation due to scattered radiation. This study aimed to assess the dose to eye lens in patients imaged using CBCT. This review aims to evaluate the scattered doses to the eye from CBCT among adult patients seeking dental treatment. The search included published articles in the Web of Science, PubMed (MeSH and Web PubMed), Medline, and Google Scholar databases using the appropriate keywords from January 2010 to July 2022. The inclusion criteria were based on the method of dose measurement (phantom studies using Optically stimulated luminescence (OSL) and Thermoluminescent dosimeter (TLD), language, and type of protocol used. A literature search was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist and flow chart. Out of 653 articles identified, 5 met the inclusion criteria. The results show that the scattered radiation dose ranged between 0.103 mSv and 8.3 mSv. This variation exists due to the difference in the field of vision (FOV), phantom exposure, dosimeters used, degree of rotation in the protocol, and finally, the scanner used. The scattered dose to the eye from CBCT is higher than the background radiation, with huge variability in the range of the dose measured. Clear guidelines for utilizing CBCT should be implemented, and dose reference levels should be established for benchmarking and optimization in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407597 | PMC |
http://dx.doi.org/10.7759/cureus.43113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!