Objective: Mammographic screening for breast cancer is an early use case for artificial intelligence (AI) in healthcare. This is an active area of research, mostly focused on the development and evaluation of individual algorithms. A growing normative literature argues that AI systems should reflect human values, but it is unclear what this requires in specific AI implementation scenarios. Our objective was to understand women's values regarding the use of AI to read mammograms in breast cancer screening.
Methods: We ran eight online discussion groups with a total of 50 women, focused on their expectations and normative judgements regarding the use of AI in breast screening.
Results: Although women were positive about the potential of breast screening AI, they argued strongly that humans must remain as central actors in breast screening systems and consistently expressed high expectations of the performance of breast screening AI. Women expected clear lines of responsibility for decision-making, to be able to contest decisions, and for AI to perform equally well for all programme participants. Women often imagined both that AI might replace radiographers and that AI implementation might allow more women to be screened: screening programmes will need to communicate carefully about these issues.
Conclusions: To meet women's expectations, screening programmes should delay implementation until there is strong evidence that the use of AI systems improves screening performance, should ensure that human expertise and responsibility remain central in screening programmes, and should avoid using AI in ways that exacerbate inequities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408316 | PMC |
http://dx.doi.org/10.1177/20552076231191057 | DOI Listing |
Clin Breast Cancer
December 2024
Department of Oncology, Princess Margaret Hospital, Kowloon West Cluster, Hospital Authority, Hong Kong S.A.R., China. Electronic address:
Cell Signal
January 2025
Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China. Electronic address:
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China. Electronic address:
In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.
Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.
View Article and Find Full Text PDFBiomaterials
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:
Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!