A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of lymph node metastasis in pre-operation cervical cancer patients by weakly supervised deep learning from histopathological whole-slide biopsy images. | LitMetric

Background: Lymph node metastasis (LNM) significantly impacts the prognosis of individuals diagnosed with cervical cancer, as it is closely linked to disease recurrence and mortality, thereby impacting therapeutic schedule choices for patients. However, accurately predicting LNM prior to treatment remains challenging. Consequently, this study seeks to utilize digital pathological features extracted from histopathological slides of primary cervical cancer patients to preoperatively predict the presence of LNM.

Methods: A deep learning (DL) model was trained using the Vision transformer (ViT) and recurrent neural network (RNN) frameworks to predict LNM. This prediction was based on the analysis of 554 histopathological whole-slide images (WSIs) obtained from Qilu Hospital of Shandong University. To validate the model's performance, an external test was conducted using 336 WSIs from four other hospitals. Additionally, the efficiency of the DL model was evaluated using 190 cervical biopsies WSIs in a prospective set.

Results: In the internal test set, our DL model achieved an area under the curve (AUC) of 0.919, with sensitivity and specificity values of 0.923 and 0.905, respectively, and an accuracy (ACC) of 0.909. The performance of the DL model remained strong in the external test set. In the prospective cohort, the AUC was 0.91, and the ACC was 0.895. Additionally, the DL model exhibited higher accuracy compared to imaging examination in the evaluation of LNM. By utilizing the transformer visualization method, we generated a heatmap that illustrates the local pathological features in primary lesions relevant to LNM.

Conclusion: DL-based image analysis has demonstrated efficiency in predicting LNM in early operable cervical cancer through the utilization of biopsies WSI. This approach has the potential to enhance therapeutic decision-making for patients diagnosed with cervical cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523985PMC
http://dx.doi.org/10.1002/cam4.6437DOI Listing

Publication Analysis

Top Keywords

cervical cancer
20
lymph node
8
node metastasis
8
cancer patients
8
deep learning
8
histopathological whole-slide
8
diagnosed cervical
8
predicting lnm
8
pathological features
8
external test
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!