Splicing factors (SFs) are proteins that control the alternative splicing (AS) of RNAs, which have been recognized as new cancer hallmarks. Their dysregulation has been found to be involved in many biological processes of cancer, such as carcinogenesis, proliferation, metastasis and senescence. Dysregulation of SFs has been demonstrated to contribute to the progression of prostate cancer (PCa). However, a comprehensive analysis of the prognosis value of SFs in PCa is limited. In this work, we systematically analysed 393 SFs to deeply characterize the expression patterns, clinical relevance and biological functions of SFs in PCa. We identified 53 survival-related SFs that can stratify PCa into two de nove molecular subtypes with distinct mRNA expression and AS-event expression patterns and displayed significant differences in pathway activity and clinical outcomes. An SF-based classifier was established using LASSO-COX regression with six key SFs (BCAS1, LSM3, DHX16, NOVA2, RBM47 and SNRPN), which showed promising prognosis-prediction performance with a receiver operating characteristic (ROC) >0.700 in both the training and testing datasets, as well as in three external PCa cohorts (DKFZ, GSE70769 and GSE21035). CRISPR/CAS9 screening data and cell-level functional analysis suggested that LSM3 and DHX16 are essential factors for the proliferation and cell cycle progression in PCa cells. This study proposes that SFs and AS events are potential multidimensional biomarkers for the diagnosis, prognosis and treatment of PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494302PMC
http://dx.doi.org/10.1111/jcmm.17849DOI Listing

Publication Analysis

Top Keywords

splicing factors
8
prostate cancer
8
sfs
8
sfs pca
8
expression patterns
8
lsm3 dhx16
8
pca
7
comprehensively analysis
4
analysis splicing
4
factors construct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!