Background: Aberrant proliferation of vascular smooth muscle cells (VSMCs) is the cause of neointima formation followed by vascular injury. Autophagy is involved in this pathological process, but its function is controversial. Recently, we found that methyltransferase like 3 (METTL3) inhibited VSMC proliferation by activating autophagosome formation. Moreover, we also demonstrated that METTL3 reduced the levels of phosphorylated mammalian target of rapamycin (p-mTOR) and cyclin dependent kinase 1 (p-CDK1/CDC2), which were critical for autophagy and proliferation regulation. However, whether mTOR and CDK1 mediated the function of METTL3 on autophagy and proliferation in VSMCs remains unknown.
Results: We showed that the activator of mTOR, MHY1485 largely reversed the effects of METTL3 overexpression on VSMC autophagy and proliferation. Rapamycin, the inhibitor of mTOR, obviously nullified the pro-proliferation effects of METTL3 knockdown by activating autophagy in VSMCs. Unexpectedly, mTOR did not contribute to the impacts of METTL3 on migration and phenotypic switching of VSMCs. On the other hand, by knockdown of CDK1 in VSMC with METTL3 deficiency, we demonstrated that CDK1 was involved in METTL3-regulated proliferation of VSMCs, but this effect was not mediated by autophagy.
Conclusions: We concluded that mTOR but not CDK1 mediated the role of METTL3 on VSMC proliferation and autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411010 | PMC |
http://dx.doi.org/10.1186/s13008-023-00096-5 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:
Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.
View Article and Find Full Text PDFWound Repair Regen
January 2025
Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Jiangsu, Suzhou, 215000, China.
Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA.
Phosphatidylinositol-3 kinases (PI3Ks) play a critical role in maintaining cardiovascular health and the development of cardiovascular diseases (CVDs). Specifically, vacuolar Protein Sorting 34 (VPS34) or PIK3C3, the only member of Class III PI3K, plays an important role in CVD progression. The main function of VPS34 is inducing the production of phosphatidylinositol 3-phosphate, which, together with other essential structural and regulatory proteins in forming VPS34 complexes, further regulates the mammalian target of rapamycin activation, autophagy, and endocytosis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.
Background: Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.
Methods: The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!