Kinases represent one of the most therapeutically tractable targets for drug discovery in the twenty-first century. However, confirming engagement and achieving intracellular kinase selectivity for small-molecule kinase inhibitors can represent noteworthy challenges. The NanoBRET platform enables broad-spectrum live-cell kinase selectivity profiling in most laboratory settings, without advanced instrumentation or expertise. However, the prototype workflow for this selectivity profiling is currently limited to manual liquid handling and 96-well plates. Herein, we describe a scalable workflow with automation and acoustic dispensing, thus dramatically improving the throughput. Such adaptations enable profiling of larger compound sets against 192 full-length protein kinases in live cells, with statistical robustness supporting quantitative analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3397-7_8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!