A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inducing factors and deformation mechanism of the Zhangjiacitang landslide in the Three Gorges Reservoir Area. | LitMetric

Landslides are the most widely distributed geological hazards in the Three Gorges Reservoir Area (TGRA). Understanding the deformation mechanism and evolution of landslides is of great significance for their prevention and control. In this study, we focused on the Zhangjiacitang landslide, a typical bank landslide in the TGRA. We analyzed the relationship between landslide deformation and water level fluctuations and rainfall, based on accumulated displacement monitoring data, to clarify their triggering factors and deformation mechanism. The results show that the Zhangjiacitang landslide is a large-scale accumulation landslide. Under the influence of cyclic water level fluctuations and periodic rainfall, the accumulated displacement-time curve shows a "stepped" characteristic. Heavy rainfall emerged as the primary factor influencing the deformation of the Zhangjiacitang landslide, leading to substantial deformation throughout different periods. The deformation of the landslide exhibited a positive correlation with the intensity of rainfall. In contrast, the impact of water level changes on the landslide deformation was more intricate. A rapid water level drop (> 0.3 m/d) tended to intensify the landslide deformation, while the slow water level drop period (< 0.3 m/d) did not exhibit such an effect. This study emphasizes the need for closely monitoring the landslide status during heavy rainfall periods and rapid water level decline periods. The findings of this study provide a certain reference for landslide monitoring, early warning, prevention and control in the TGRA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412534PMC
http://dx.doi.org/10.1038/s41598-023-40186-6DOI Listing

Publication Analysis

Top Keywords

water level
20
zhangjiacitang landslide
16
deformation mechanism
12
landslide deformation
12
landslide
10
deformation
9
factors deformation
8
mechanism zhangjiacitang
8
three gorges
8
gorges reservoir
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!