Assessing perceived vulnerability to a health threat is essential to understanding how people conceptualize their risk, and to predicting how likely they are to engage in protective behaviors. However, there is limited consensus about which of many measures of perceived vulnerability predict behavior best. We tested whether the ability of different measures to predict protective intentions varies as a function of the type of information people learn about their risk. Online participants (N = 909) read information about a novel respiratory disease before answering measures of perceived vulnerability and vaccination intentions. Type-of-risk information was varied across three between-participant groups. Participants learned either: (1) only information about their comparative standing on the primary risk factors (comparative-only), (2) their comparative standing as well as the base-rate of the disease in the population (+ base-rate), or (3) their comparative standing as well as more specific estimates of their absolute risk (+ absolute-chart). Experiential and affective measures of perceived vulnerability predicted protective intentions well regardless of how participants learned about their risk, while the predictive ability of deliberative numeric and comparative measures varied based on the type of risk information provided. These results broaden the generalizability of key prior findings (i.e., some prior findings about which measures predict best may apply no matter how people learn about their risk), but the results also reveal boundary conditions and critical points of distinction for determining how to best assess perceived vulnerability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10865-023-00439-1DOI Listing

Publication Analysis

Top Keywords

perceived vulnerability
24
measures perceived
16
comparative standing
12
vulnerability predict
8
predict protective
8
measures predict
8
protective intentions
8
people learn
8
learn risk
8
participants learned
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!