UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412574PMC
http://dx.doi.org/10.1038/s41467-023-40537-xDOI Listing

Publication Analysis

Top Keywords

uba1 activity
12
enhances uba1
8
facilitating ubiquitin
8
ubiquitin-conjugating enzymes
8
uba1
7
auranofin
5
auranofin targets
4
targets uba1
4
uba1 enhances
4
activity facilitating
4

Similar Publications

Ubiquitin-like modifier-activating enzyme 1 interacts with Zika virus NS5 and promotes viral replication in the infected cell.

J Gen Virol

January 2025

Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain.

Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins.

View Article and Find Full Text PDF

UBA1 is an E1 ubiquitin-activating enzyme that initiates the ubiquitylation of target proteins and is thus a key component of the ubiquitin signaling pathway. Three disorders are associated with pathogenic variants of the UBA1 gene: vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, lung cancer in never smokers (LCINS), and X-linked spinal muscular atrophy (XL-SMA, SMAX2). We here report a case of infantile respiratory distress syndrome followed by continuing neuromuscular symptoms.

View Article and Find Full Text PDF

A man in his 60s suffered from refractory, biopsy-proven subacute cutaneous lupus erythematosus that required chronic, moderate dose steroids to manage. His rash was accompanied by arthralgias and negative autoantibody testing. His subacute lupus erythematosus (SCLE) was responsive to tofacitinib, but thrombotic complications limited the use of this medication.

View Article and Find Full Text PDF

[New Advances in the Study of VEXAS Syndrome --Review].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Department of Hematology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, Jiangsu Province, China.

Article Synopsis
  • VEXAS syndrome is an adult-onset autoinflammatory disorder linked to somatic mutations in the X-linked gene affecting the ubiquitin system.
  • Patients exhibit a variety of symptoms, including fever, inflammation, and hematological issues like anemia and thrombocytopenia, leading to high morbidity and mortality.
  • Current treatments focus on managing symptoms and mutations but are not well-developed, emphasizing the need for supportive care and risk factor management.
View Article and Find Full Text PDF

The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!