The intrinsic magnetic topological insulator, Mn(BiSb)Te, has been identified as a Weyl semimetal with a single pair of Weyl nodes in its spin-aligned strong-field configuration. A direct consequence of the Weyl state is the layer dependent Chern number, [Formula: see text]. Previous reports in MnBiTe thin films have shown higher [Formula: see text] states either by increasing the film thickness or controlling the chemical potential. A clear picture of the higher Chern states is still lacking as data interpretation is further complicated by the emergence of surface-band Landau levels under magnetic fields. Here, we report a tunable layer-dependent [Formula: see text] = 1 state with Sb substitution by performing a detailed analysis of the quantization states in Mn(BiSb)Te dual-gated devices-consistent with calculations of the bulk Weyl point separation in the doped thin films. The observed Hall quantization plateaus for our thicker Mn(BiSb)Te films under strong magnetic fields can be interpreted by a theory of surface and bulk spin-polarised Landau level spectra in thin film magnetic topological insulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412595PMC
http://dx.doi.org/10.1038/s41467-023-40383-xDOI Listing

Publication Analysis

Top Keywords

magnetic topological
12
intrinsic magnetic
8
topological insulators
8
[formula text]
8
thin films
8
magnetic fields
8
magnetic
5
anomalous landau
4
landau quantization
4
quantization intrinsic
4

Similar Publications

The structural and electronic behavior of thiosemicarbazone (TSC)-based metal complexes of Mn (II), Fe (II), and Ni (II) have been investigated. The synthesized metal complexes were characterized using elemental analysis, magnetic susceptibility, molar conductivity, FTIR, and UV-Vis spectroscopy, the computational path helped with further structural investigation. The solubility test on the TSC and its complexes revealed their solubility in most organic solvents.

View Article and Find Full Text PDF

Interfacial Strain-Driven Large Topological Hall Effects in Supermalloy Thin Films with Noncoplanar Spin Textures.

ACS Appl Mater Interfaces

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.

View Article and Find Full Text PDF

Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.

Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.

View Article and Find Full Text PDF

Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.

View Article and Find Full Text PDF

Altermagnetism in two-dimensional CaRuO perovskite.

Nanoscale

January 2025

Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.

We propose and characterize a novel two-dimensional material, 2D-CRO, derived from bulk calcium-based ruthenates (CROs) of the Ruddlesden-Popper family, CaRuO ( = 1 and 2). Using density functional theory, we demonstrate that 2D-CRO maintains structural stability down to the monolayer limit, exhibiting a tight interplay between structural and electronic properties. Notably, 2D-CRO displays altermagnetic behavior, characterized by zero net magnetization and strong spin-dependent phenomena, stabilized through dimensionality reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!