The effects of two retinoids, all-trans-retinoic acid (t-RA) and 13-cis-retinoic acid (c-RA) were studied in a model of osteoclast precursors. The model employs the U937 cell line induced to differentiate when incubated with 1 alpha,25-dihydroxyvitamin D3 and conditioned medium from stimulated human lymphocytes. t-RA and c-RA (10(-8) to 10(-6) M) inhibited cellular growth rates and increased surface adherence. However, t-RA and c-RA both partially blocked the differentiation induced by 1,25(OH)2D3 and lymphokines. Thus, retinoids alone promoted the differentiation of U937 cells but partially blocked the differentiation induced by a vitamin D metabolite and lymphokines. These results suggest that vitamins A and D may exert antagonistic effects on the recruitment of osteoclast precursors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000441-198609000-00006 | DOI Listing |
Int J Mol Sci
December 2024
Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy.
The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico.
The Annona genus contains some species used in Mexican traditional medicine for the treatment cancer, including . The present study aimed to investigate the anticancer activity of caryophyllene oxide (CO) isolated from using in vivo, in vitro, and in silico approaches. The identification of CO was performed using gas chromatography-mass spectroscopy and NMR methods.
View Article and Find Full Text PDFCells
December 2024
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
THP1 and U937 are monocytic cell lines that are common bioassays to reflect monocyte and macrophage activities in inflammation research. However, THP-1 is a human monocytic leukemia cell line, and U937 originates from pleural effusion of histiocytic lymphoma; thus, even though they serve as bioassay in inflammation research, their response to agonists is not identical. Consequently, there has yet to be a consensus about the panel of strongly regulated genes in THP1 and U937 cells representing the inflammatory response to LPS and IFNG.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).
View Article and Find Full Text PDFCent Eur J Immunol
November 2024
Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey.
Mesenchymal stem cells (MSCs), which are multipotent adult cells with many therapeutic effects, can be derived from stromal tissues. MSCs also exert immunoregulatory effects through extracellular vesicles (EVs), cell membrane structures that carry paracrine factors. It is thought that the mediators (cytokines, growth factors, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!