The dopaminergic neuromodulator system is fundamental to brain functions. Abnormal dopamine (DA) pathway is implicated in psychiatric disorders, including schizophrenia (SZ) and autism spectrum disorder (ASD). Mutations in Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex, have been associated with SZ and ASD. However, little is known about the function and mechanism of CUL3 in the DA system. Here, we show that CUL3 is critical for the function of DA neurons and DA-relevant behaviors in male mice. CUL3-deficient mice exhibited hyperactive locomotion, deficits in working memory and sensorimotor gating, and increased sensitivity to psychostimulants. In addition, enhanced DA signaling and elevated excitability of the VTA DA neurons were observed in CUL3-deficient animals. Behavioral impairments were attenuated by dopamine D2 receptor antagonist haloperidol and chemogenetic inhibition of DA neurons. Furthermore, we identified HCN2, a hyperpolarization-activated and cyclic nucleotide-gated channel, as a potential target of CUL3 in DA neurons. Our study indicates that CUL3 controls DA neuronal activity by maintaining ion channel homeostasis and provides insight into the role of CUL3 in the pathogenesis of psychiatric disorders. This study provides evidence that Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex that has been associated with autism spectrum disorder and schizophrenia, controls the excitability of dopamine (DA) neurons in mice. Its DA-specific heterozygous deficiency increased spontaneous locomotion, impaired working memory and sensorimotor gating, and elevated response to psychostimulants. We showed that CUL3 deficiency increased the excitability of VTA DA neurons, and inhibiting D2 receptor or DA neuronal activity attenuated behavioral deficits of CUL3-deficient mice. We found HCN2, a hyperpolarization-activated channel, as a target of CUL3 in DA neurons. Our findings reveal CUL3's role in DA neurons and offer insights into the pathogenic mechanisms of autism spectrum disorder and schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490515PMC
http://dx.doi.org/10.1523/JNEUROSCI.0247-23.2023DOI Listing

Publication Analysis

Top Keywords

vta neurons
12
autism spectrum
12
spectrum disorder
12
neurons
9
cul3
9
schizophrenia autism
8
psychiatric disorders
8
cullin cul3
8
cul3 core
8
core component
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, NY, Iran (Islamic Republic of).

Background: Alzheimer's disease (AD) is a degenerative condition characterized by a progressive decline in cognitive function, predominantly affecting older individuals. AD is associated with a range of histopathological alterations, including the gradual demise of neuronal cells, the accumulation of amyloid plaques, and the formation of neurofibrillary tangles. Furthermore, research suggests that the brain tissue of AD patients is subject to oxidative stress, which manifests as the oxidation of proteins, lipids, DNA, and the process of glycoxidation, throughout the disease progression.

View Article and Find Full Text PDF
Article Synopsis
  • The primary motor cortex (M1) is essential for learning motor skills, and dopaminergic signaling from the ventral-tegmental area (VTA) plays a significant role in this process.
  • Using techniques like calcium imaging and chemogenetic inhibition, researchers found that learning a dexterity task leads to a reorganization of M1 layer 2-3, changing how neurons connect and communicate while maintaining overall activity levels.
  • Blocking VTA signals during learning halted these neural changes, highlighting the importance of dopaminergic input in developing outcome signaling and refined connectivity in M1, which is crucial for acquiring new motor skills.
View Article and Find Full Text PDF

Infradian mood and sleep-wake rhythms with periods of 48 hours and beyond have been observed in patients with bipolar disorder (BD), which even persist in the absence of exogenous timing cues, indicating an endogenous origin. Here, we show that mice exposed to methamphetamine in drinking water develop infradian locomotor rhythms with periods of 48 hours and beyond which extend to sleep length and manic state-associated behaviors in support of a model for cycling in BD. The cycling capacity is abrogated upon genetic disruption of dopamine (DA) production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens projecting DA neurons.

View Article and Find Full Text PDF

The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, consists predominantly of dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction, which is used in computing a reward prediction error. In this study, using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we discovered distinct populations of VTA GABA neurons that exhibited precise force tuning independently of learning, reward prediction, and outcome valence.

View Article and Find Full Text PDF

Ventral tegmental area (VTA) dopamine (DA) neurons are classically linked to Pavlovian reward learning and reinforcement. Intermingled VTA GABA neurons are positioned to regulate dopaminergic and striatal systems, but we lack critical insight into how this population contributes to conditioned motivation in different learning contexts. Recording DA and GABA neurons across multiple conditioning paradigms, we found that GABA neurons not only actively encode appetitive and aversive cues and outcomes separately, but uniquely integrate salient events of both valences to guide reward seeking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!