In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/brv.13004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!