Kinetics and modeling of Pb (II) adsorption in pellet biochar based on micro-computed tomography characterization.

Bioresour Technol

Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China. Electronic address:

Published: November 2023

Biochar, a cost-effective adsorbent for the removal of heavy metals from aqueous solutions, has gained increasing attention. In this study, an advanced micro-computed tomography (micro-CT) system was used to investigate the adsorption kinetics by direct localization and visualization of Pb (II) on wheat straw pellet biochar. The normalized digital images indicating the dynamic changes of Pb (II) adsorption on biochar samples at different initial Pb (II) concentrations of 100, 200, 300, and 400 mg/L and adsorption times were obtained. It was found that image grayscale (GS) changes over adsorption time (t) followed the power function, GS/GS=2.45∗t. Based on this finding, modified pseudo-first-order (PFO) and pseudo-second-order (PSO) models incorporated with time-dependent kinetic constants kt=K∗GS/GS and kt=K∗GS/GS were proposed, resulting in a better interpretation of the adsorption mechanism. The micro-CT-guided novel approach demonstrated visual evidence-based superiority and should prove valuable to the existing body of research in related fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129645DOI Listing

Publication Analysis

Top Keywords

pellet biochar
8
micro-computed tomography
8
changes adsorption
8
adsorption
6
kinetics modeling
4
modeling adsorption
4
adsorption pellet
4
biochar
4
biochar based
4
based micro-computed
4

Similar Publications

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Behaviors of bio-modified calcium-based sorbents for simultaneous CO/NO removal: Correlation of the characteristics of biomass, modified Ca-sorbent and reactivity.

J Environ Manage

January 2025

Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.

Article Synopsis
  • Simultaneous removal of CO and NO from flue gas is important for reducing atmospheric pollutants and carbon emissions.
  • An optimized calcium oxide (CaO) system is proposed using bio-modified calcium-based pellets, where biomass pyrolysis enhances efficiency.
  • The study finds that different biomass types impact pellet characteristics, with cellulose improving pellet structure for better CO/NO removal, while lignin increases biochar production, affecting capture performance based on pore structure and biochar content.
View Article and Find Full Text PDF

The Campylobacter prevalence in free-ranging broiler flocks is usually higher than in conventional flocks, and effective interventions for this production type are needed. This study aimed to investigate the on-farm Campylobacter-reducing effect of feeding three feed additives or a water additive to broilers from hatching to slaughter. Newly hatched Ranger Gold broilers (n = 140) were randomly placed into five cages (n = 28/cage) within a flock of 6,000 broilers.

View Article and Find Full Text PDF

Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar.

Environ Pollut

February 2025

Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

Potentially toxic elements (PTEs) are widespread pollutants in agricultural fields, presenting significant challenges to the maintenance of soil ecological functions while simultaneously reducing their concentrations. This study detailed the development of a high-strength reusable silicate magnetic composite biochar sphere (SMBCS) characterized by superior magnetic and adsorption properties, synthesized from natural minerals and biochar. The application of SMBCS over three consecutive remediation cycles led to reductions in cadmium (Cd), lead (Pb), and arsenic (As) concentrations in soil by 28.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!